
Naval Research Laboratory
Washington, DC 20375-5320

Approved for public release; distribution is unlimited.

October 17, 2012

NRL/FR/5591--12-10,224

Christopher L. robson

Exploiting the Multi-Service Domain
Protecting Interface

Center for Computational Science
Information Technology Division

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

17-10-2012

Formal Report

Exploiting the Multi-Service Domain Protecting Interface

Christopher L. Robson

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/FR/5591--12-10,224

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
Unlimited 89

Christopher L. Robson

202-404-3138

Session Initiation Protocol Network encryption device
Control plane Routing

SAF/FMBIB-AFOY
P.O. Box 14200
Washington, DC 20044-4200

 1 October 2010 – 30 September 2011

 0603011F

 J955

SAF/FMBIB-AFOY

 The technology discussed in this paper demonstrates how a single converged control plane can benefit the U.S. government. It converges the
capabilities of information assurance and policy with inter- and intra-domain routing and protection into a single control plane. Additionally, this
technology provides a single utility which integrates communications and management control functions. It can asynchronously execute appli-
cations locally and/or remotely. This design is attractive to the U.S. government because of its ability to converge and centrally control various
functions into one common control plane.

This page
intentionally

left blank

iii

CONTENTS

ACRONYMS AND ABBREVIATIONS ... vii

1 INTRODUCTION ... 1

2 BACKGROUND ... 2

3 SCOPE ... 4

4 EXISTING PROTECTION LIMITATIONS OF PROTECTED DATA .. 4

5 THE MULTI-SERVICE DOMAIN PROTECTING INTERFACE .. 5

6 MSDPI SERVICE CAPABILITIES .. 5

7 MSDPI USE OF MPLS ... 6

8 MSDPI DESIGN ... 6
8.1 Overview ... 6
8.2 SIP Control Plane Design Features ... 8
8.3 Network Interface .. 8
8.4 Modular Design Features .. 9
8.5 SIP MESSAGE Dialog .. 9

8.5.1 SIP MESSAGE Subject Field .. 9
8.5.2 SIP MESSAGE Address Field ... 10
8.5.3 SIP MESSAGE PIDF Format .. 10

9 MSDPI ARCHITECTURE .. 12
9.1 Component Definitions ... 12
9.2 Control Messages .. 12
9.3 Managing Policy Between MSDPI Interfaces ... 13
9.4 Encryption Device Peer Discovery ... 16
9.5 Component Description ... 16

9.5.1 LDC PTD Network Management System MSDPI Initiator-Responder 16
9.5.2 LDC PTD Initiator-Responder ... 18
9.5.3 MSDPI Encryption Engine Initiator-Responder ... 19
9.5.4 MSDPI CTD Initiator-Responder ... 19
9.5.5 CTD Network Management System Initiator-Responder .. 20

10 CONTROL PLANE .. 20
10.1 Label .. 20
10.2 Control Channels ... 22
10.3 Example I-R PIDF Messages .. 23
10.4 Securing the Control Plane .. 24

11 DATA PLANE .. 25
11.1 Data Flow .. 25
11.2 PTD/CTD MSDPI Virtual Routing and Forwarding Buffers .. 25
11.3 PTD/CTD Label Data I/O ... 25

iv

12 HARDWARE COMPONENTS .. 26
12.1 How an MSDPI FPGA Device Functions ... 26
12.2 How an MSDPI FPGA InfiniBand Device Functions ... 27

13 MSDPI CONCEPT OF OPERATIONS .. 27
13.1 MSDPI Warfighter Concept of Operations ... 30

14 OPERATIONAL PROTOTYPE EXAMPLES ... 32
14.1 Prototype Testing, Architecture, and Commands .. 32

14.1.1 How the Prototypes Were Tested ... 32
14.1.2 MSDPI Prototype Architecture .. 32
14.1.3 MSDPI Commands ... 34

14.2 SIP Discovery Service Prototype .. 37
14.3 Commercial Product Prototypes .. 38
14.4 NRL Commercial Prototype .. 38
14.5 Bay Microsystems Product Prototype ... 39

14.5.1 Why the Bay Microsystems ABEx and NP10 Network Devices 39
14.5.2 Buildroot .. 39
14.5.3 Incorporating MSDPI into Buildroot for the ABEx/NP10 ... 40
14.5.4 Shortcomings to the Bay Microsystems Implementation of Buildroot 43

14.6 NRL MSDPI DISN Policy Proxy Prototype ... 44

15 MSDPI AS A TEST SUITE .. 47

16 MSDPI L2TPV3 TEST FOR LARGE DATA JCTD .. 51
16.1 L2TPv3 .. 51
16.2 Raw Collected Data ... 52

16.2.1 Device Comparison Study .. 52
16.2.2 Host-to-Host Study ... 54
16.2.3 Host–KG–KG–Host Study ... 55
16.2.4 Bay Microsystems Baseline Study ... 56
16.2.5 Cisco Baseline Study .. 57
16.2.6 Host, L2TPv3 VPN Device and Router Study ... 58
16.2.7 Host, L2TPv3 VPN Device, Router with Network Encryption Device Study 58

16.3 L2TPv3 Test Conclusions ... 59

17 MSDPI INFINIBAND SERVER-CLIENT TEST .. 59
17.1 System Configuration Overview ... 59
17.2 Test Script Overview ... 61
17.3 Raw Test Data ... 64
17.4 Test Data Analysis ... 67
17.5 Rerunning the Test Data Analysis ... 70
17.6 Test Data Conclusion .. 72

18 MSDPI ENGINEERED INTO A LIVECD DISTRIBUTION .. 73
18.1 Linux LiveCD.. 73
18.2 MSDPI LiveCD ... 73
18.3 MSDPI LiveCD Feature Sets .. 73
18.4 How to Build an MSDPI LiveCD ... 73

19 WORK OUTSTANDING ... 77

20 CONCLUSION ... 78

v

FIGURES

Fig. 1 — Demonstration of an IC control and data plane ... 3
Fig. 2 — MSDPI control plane and data plane ... 7
Fig. 3 — MSDPI detailed architecture .. 7
Fig. 4 — MSDPI network interface examples .. 8
Fig. 5 — Example of an I-R MESSAGE dialog message ... 10
Fig. 6 — Basic I-R PIDF control MESSAGE .. 11
Fig. 7 — Example of PTD NMS I-R control message ... 13
Fig. 8 — PTD NMS I-R to PTD NMS I-R policy negotiation ... 14
Fig. 9 — Example of peering LDC PTD NMS I-R policy flow ... 15
Fig. 10 — Example of LDC PTD NMS I-R to peer LDC PTD NMS I-R PIDF .. 15
Fig. 11 — MSDPI policy CONOPS ... 16
Fig. 12 — Initiator-Responder policy negotiation sequence .. 17
Fig. 13 — LDC I-R command flow .. 18
Fig. 14 — LDC I-R policy status/negotiation ... 19
Fig. 15 — MSDPI label encryption .. 21
Fig. 16 — 802.1Q MSDPI label ... 21
Fig. 17 — InfiniBand to MSDPI label mapping ... 22
Fig. 18 — Example of PTD NMS I-R to PTD I-R PIDF .. 23
Fig. 19 — Example of PTD NMS I-R to VRFB PIDF ... 24
Fig. 20 — MSDPI programmed into hardware ... 26
Fig. 21 — MSDPI InfiniBand switch ... 27
Fig. 22 — MSDPI peer-to-peer (P2P) CONOPS .. 28
Fig. 23 — MSDPI client-server CONOPS ... 29
Fig. 24 — MSDPI warfighter CONOPS ... 30
Fig. 25 — MSDPI warfighter reconfigurability CONOPS ... 31
Fig. 26 — MSDPI prototype architecture ... 33
Fig. 27 — MSDPI software architecture .. 34
Fig. 28 — SIP-DS prototype architecture ... 37
Fig. 29 — Example of an MSDPI commercial prototype ... 38
Fig. 30 — First MSDPI FPGA prototype ... 39
Fig. 31 — DoD DISN policy proxy prototype .. 44
Fig. 32 — MSDPI Test Master/Client configuration of IB tests .. 48
Fig. 33 — Captured MSDPI IB test results .. 49
Fig. 34 — Captured output of MSDPI IB test results ... 49
Fig. 35 — Captured MSDPI IB QSFP-to-CX4 cable test results ... 50
Fig. 36 — Test results from the five configurations ... 53
Fig. 37 — Summary of L2TPv3 test results ... 53
Fig. 38 — Host-to-host performance results (B2BHost) .. 54
Fig. 39 — Host–KG–KG–Host performance results (HKGH) ... 55
Fig. 40 — Performance results for two hosts connected through two Bay Microsystems ABEx

network devices (HABExH) ... 56
Fig. 41 — Performance data for two hosts connected through two CISCO ASR1004 routers

through two encryption devices (HCKGCH) ... 57
Fig. 42 — Performance data collected from two Dell 860 hosts connected through two CISCO

ASR1004 routers, two Bay Microsystems ABEx network devices, and two Level3
Red Eagle KG-245X encryption devices (HCABExKGABExCH) ... 58

Fig. 43 — InfiniBand startup performance test .. 60

vi

Fig. 44 — Startup comparison data .. 68
Fig. 45 — TD25 test data .. 68
Fig. 46 — TD18 test data .. 69
Fig. 47 — TD30 test data .. 69
Fig. 48 — Reevaluation of the startup comparison data ... 70
Fig. 49 — TD25 re-test data ... 71
Fig. 50 — TD26 re-test data ... 71
Fig. 51 — TD28 re-test data ... 72
Fig. 52 — Example of the MSDPI repository file .. 74
Fig. 53 — Example of the MSDPI rpmbuild specification file .. 75
Fig. 54 — Example of the MSDPI package rpmbuild specification file .. 76
Fig. 55 — Example of the MSDPI package LiveCD kickstart file ... 77

TABLES

Table 1 — PIDF Tag Definitions .. 12
Table 2 — Minimum Set of PTD I-R Type Codes ... 13
Table 3 — MSDPI Commands ... 35
Table 4 — MSDPI Buildroot Package Compilation Script .. 41
Table 5 — Sofia-SIP Buildroot Package Compilation Script ... 42
Table 6 — MSDPI Buildroot Package Config.in Menu Script ... 43
Table 7 — Sofia-SIP Buildroot Package Menu Script .. 43
Table 8 — MSDPI Juniper Policy Proxy Program Code .. 45
Table 9 — MSDPI PIDF - ib_send_bw Listener Configuration File ... 50
Table 10 — MSDPI PIDF - ib_send_bw Sender Configuration File ... 51
Table 11 — Test Configurations for the MSDPI L2TPv3 Test .. 52
Table 12 — Host-to-Host Test Data ... 54
Table 13 — Host–KG–KG–Host Test Data ... 55
Table 14 — Host–ABEx–ABEx–Host Test Data ... 56
Table 15 — Host–ASR–KG–KG–ASR–Host Test Data .. 57
Table 16 — Host–ASR–ABEx–KG–KG–ABEx–ASR–Host Test Data .. 59
Table 17 — InfiniBand Network Adapter Specifications ... 60
Table 18 — Configuration Commands for Each MSDPI Server .. 61
Table 19 — TD25 Configuration Command Entries .. 61
Table 20 — TD18 Configuration Command Entries .. 61
Table 21 — TD30 Configuration Command Entries .. 62
Table 22 — MSDPI Test-Master Test Script Command Entries .. 62
Table 23 — MSDPI ib_send_bw Server Test Script Parameter Directives File .. 63
Table 24 — MSDPI ib_send_bw Client Test Script Parameter Directives File ... 63
Table 25 — Sampling of TD25 Raw Test Data .. 64
Table 26 — Sampling of TD18 Raw Test Data .. 65
Table 27 — Sampling of TD30 Raw Test Data .. 66
Table 28 — First Three Iteration Cycle Data ... 67
Table 29 — First Three Iteration Cycles Reevaluated .. 70

vii

ACRONYMS AND ABBREVIATIONS

API Application Programming Interface
ATDNet Advanced Technology Demonstration Network
ATM Asynchronous Transfer Mode
CT Cypher Text
CTD Cypher Text Domain
DDR Double Data Rate
DISN Defense Information Systems Network
DoD Department of Defense
EE Encryption Engine
FEON Fast Encrypting Operational Networks
FIFO First In First Out
FPGA Field Programmable Gate Array
GE Gigabit Ethernet
GRH Global Routing Header
HAIPE High Assurance Internet Protocol Encryptor
HSET High Speed Encryption Technology
IA Information Assurance
IB InfiniBand
IC Intelligence Community
I/O Input/Output
IP/TCP Internet Protocol/T
I-R Initiator-Responder
ISSO Information Systems Security Officer
ISP Internet Service Provider
JTCD Joint Technology Capability Demonstration
L2VPN Layer 2 Virtual Private Network
LDC Local Domain Control
LER Label Edge Router
LRH Local Routing Header
LSP Label Switched Path
LSR Label Switch Router
MIPR Military Interdepartmental Purchase Request
MPLS MultiProtocol Label Switch
MSDPI Multi-Service Domain Protecting Interface
NMS Network Management System
NRL Naval Research Laboratory
NTP Network Time Protocol
OFED Open Fabrics Enterprise Distribution
OS Operating System
P2P Peer to Peer
PCIe Peripheral Component Interconnect Express
PDC Public Domain Control

viii

PEP Presence Event Package
PIDF Presence Information Data Format
POC Point of Contact
PT Plain Text
PTD Plain Text Domain
PWE Pseudo Wire Emulation
QDR Quad Data Rate
QoS Quality of Service
QP Queue Pair
R&D Research and Development
RED Random Early Detection
RIB Routing Information Base
SA Security Association
SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions
SIP Session Initiation Protocol
SSL Secure Sockets Layer
T&E Test and Evaluation
TLS Transport Layer Security
URI Uniform Resource Identifier
VLAN Virtual Local Area Network
VoIP Voice Over Internet Protocol
VPN Virtual Private Network
VRF Virtual Routing and Forwarding
VRFB Virtual Routing and Forwarding Buffer
WAN Wide Area Network
XML Extensible Markup Language

Manuscript approved August 28, 2012.

1

EXPLOITING THE MULTI-SERVICE DOMAIN PROTECTING INTERFACE

1 INTRODUCTION

This report presents details of the work performed by the Naval Research Laboratory (NRL) to meet
tasking obligations designated in MIPR M448514, Fast Encrypting Operational Networks High Speed
Encryption Technology (FEON HSET). The goal of the FEON HSET program was to develop a high
speed network encryptor. NRL was tasked to provide support to sponsor-designated partner laboratories
in the areas of networks, systems, and applications research, and engineering and testing. This report
focuses on the following work conducted.

1. InfiniBand (IB) testing was performed between two systems. InfiniBand tools and systems were

modified as required to successfully complete the IB testing. A high speed network infrastructure, the
FEON HSET test bed, was put in place to support all testing between participants. Where this network
infrastructure was not possible, test data was collected using the resources available at NRL.

2. Experiments were conducted that show how to exploit the Multi-Service Domain Protecting

Interface (MSDPI) architecture [1] to meet the tasking set in the MIPR. MSDPI is a new communications
interface used by encryption devices and network devices as a routing engine or test tool suite allowing
Department of Defense (DoD) and intelligence community (IC) networks to keep up with today’s rapid
advances in technology and continuous changes in threats without requiring modification or
recertification. For example, the experiments discussed in this report show how an encryption device
exploiting the MSDPI control plane can support a variety of infrastructure types. Further, the KG
encryption device prototypes discussed here prove the MSDPI can assure compliance with security policy
while enabling a transparent data flow. This report focuses on MSDPI’s ability to re-engineer encryption
devices, and touches on other DoD/IC requirements such as the development of a new communications
test suite and the development of a new routing engine. This report discusses how the MSDPI can easily
be exploited to support a wide variety of DoD/IC requirements.

Below is an outline of the specific NRL tasking and related accomplishments for this FY11 project.

Task 1: Install, baseline, and test network equipment provided by the sponsor.
Status: None of the originally planned equipment was delivered, as of the writing of this report.

Task 2: Baseline and test networks between NRL and the partners designated as test bed participants.
Status:

1. Four RHEL5.5 servers and four RHEL5.5 clients were installed in the FEON HSET test bed.
2. Host IB interface connected to IB switches were integrated into the test bed.
3. DDR and QDR initial testing was conducted through QDR Qlogic switch and DDR Longbow

switches.
4. QSFP cable compatibility issues were discovered, resolved, and reported.
5. Two IB QDR switches were identified for the FEON effort:

a. One QDR switch loaned from the Large Data JTCD was integrated into the test bed.

2 Christopher L. Robson

b. A second purchased QDR switch was integrated into the test bed.
6. An OpenSIPS SIP server was integrated into the test bed. (SIP = Session Initiation Protocol.)
7. The network management system (NMS) Zenoss was installed and configured, and reported

network mapping and interface statistics.
8. Testing was conducted:

a. Initial OFED perftest suite of tests was conducted and statistics collected.
b. MSDPI was integrated into the test bed and MSDPI performed point-to-point IB testing,

which required performance baselining between QDR/DDR-capable hosts.
9. Modifications were made to the MSDPI test suite:

a. The point-to-point signaling test command was integrated. This command is the IB send
server and client test sequence.

b. MSDPI Test Master for the test sequence was integrated. This function of the MSDPI
allows a tester to issue the test from a remote testing master to a targeted system.

10. The FEON HSET RD&E/T&E test bed was integrated with ATDNet as a core test bed.

Task 3: Develop, test, and incorporate the SIP Domain Discovery Service [2] and MSDPI architecture [1]
into the MSDPI prototype where appropriate.
Status:

1. Prototype modifications to the MSDPI SIP Control Plane were completed, which addresses
enhanced 10GE/40G IB tests.

2. MSDPI was integrated into the Buildroot 2011 release of the Bay Microsystems operating
system.

3. Outstanding tasks were identified for configuring more of MSDPI into the FEON HSET test bed
suite of tools and into the Large Data NMS.

2 BACKGROUND

Protecting the confidentiality of data from unwanted disclosure or access is a common requirement

for government interests and nongovernment private and public interests. The integrity of the data —
guaranteeing that it is the expected data — is also critical to data owners. Finally, assured service is also
important: data owners want to be sure the data is available when needed. Common solutions used to
provide confidentiality, integrity, and availability of user data make extensive use of cryptography.
Typically, this refers to a method in which “plain text” data is made unusable by encrypting it, rendering
it illegible to everyone except those parties who can convert the data back to its original, plain text form.
Encrypting and decrypting the data is usually accomplished by using a variety of cryptographic
techniques and devices. Further, the data is typically protected from unauthorized disclosure by
segmenting it into private domains accessible only by known communities of interest. This is commonly
accomplished through firewalling, which, simply defined, is a technique that separates protected data
from unauthorized access by exercising rules applied to that access. Lastly, data availability is guaranteed
by assuring that the systems that host, transport, and protect the data operate free from unwanted control.
That is, only those who are assigned to manage the systems can control the systems. The technologies
used to protect sensitive data undergo continual revitalization against a continuing and changing threat.
This report details a new type of interface for encryption devices that protect networks and sensitive data.
Further background can be found in Refs. 2 and 3.

For government networks and private networks to operate securely, new ways must always be found

to protect the data traversing the networks. Figure 1 illustrates a network configuration first demonstrated
for the IC as early as 1995 [3]. The data’s sensitivity criteria are usually set by the data owner, which may
be a government or a private entity. The common method for accessing data, government or private, is
through some kind of network access. For example, private sector banking customers conduct remote
private financial transactions through the World Wide Web. The typical bank customer is able to conduct

Exploiting the MSDPI 3

banking business over public networks because transactions are protected by various data-protecting
technologies such as Transport Layer Security (TLS) and firewalling.

Fig. 1 — Demonstration of an IC control and data plane

However, governments require a higher degree of data protection and therefore make use of

cryptographic systems called network encryption devices. Some leading network encryption devices used
today are the Asynchronous Transfer Mode (ATM) network encryption device called the FASTLANE [3]
and the newer Internet Protocol (IP) network encryption device called the High Assurance Internet
Protocol Encryptor (HAIPE, or converted TACLANE).0F

1 Network encryption devices function as firewalls
by segmenting local protected domains from public access, and exploit cryptography algorithms to protect
user data during transport between protected domains. Today these devices also include network
functionality based on the interfaced network. For example, the FASTLANE not only encrypts/decrypts
user data passing through the device, it functions as a limited ATM network switch as well, supporting a

1 Another type of encryption device commonly used is the link encryption device. This technology is typically used

in a point-to-point configuration.

4 Christopher L. Robson

typical suite of ATM network protocols. Even the new HAIPE network encryption devices include
network protocols to include the IP and some of the routing protocols found in typical IP network routers.

The process of developing a new network encryption device or even upgrading existing network

encryption devices is generally a major undertaking. This is because historically, network encryption
devices are an integration of the encryption engine and the network interface; therefore the entire device
must be certified and accredited for every network interface even if only one component is modified.

3 SCOPE

It is not the intent of this report to detail every functional requirement of an encryption device. For

example, device access control, cryptographic methods, or key management are not covered (it is
assumed that existing methods will be employed). Only new traffic and policy management technology is
demonstrated. The examples presented in this report are not all-encompassing designs but rather “proof of
concept” experiments to explore the capabilities of the MSDPI. It is assumed that further research and
development must be conducted to provide an operational deployable system. This report can serve as a
guide for a final implementation of commercial products.

4 EXISTING PROTECTION LIMITATIONS OF PROTECTED DATA

Public networks such as the Internet have a less stringent requirement to protect user data than the

U.S. government does.F

2 Public networks can therefore easily provide policy services such as Quality of
Service (QoS). Public networks can integrate protection technologies that are not as constraining as those
implemented by government organizations. However, U.S. government organizations such as the
Department of Defense and the intelligence community are presented with the additional challenge of
providing traffic policy while at the same time implementing restrictive protection technologies.
Implementing policy can be a challenge because the exchange of information between the protected and
the public domains is typically prohibited by the local information security policy and current techniques.
Further, network encryption devices usually are designed to support a specific network to assure
availability and performance. For example, the HAIPE can protect IP networks but is limited when used
to protect a Frame Relay network. The FASTLANE ATM network encryption device functions well in an
ATM network but cannot interface directly to an IP network.2F

3 Because these devices have one specific
network interface, deployment changes and upgrade costs for these devices are generally high (even if the
device can support multiple networks, it requires a hardware/software change). Operating these devices
may require specific training, deployed architectures may require unique configurations, and logistics can
be challenging. Thus, operating these devices becomes an art, as configurations become a balance of
driving up protection mechanisms versus network functionality. All these issues promote constant
changes with encryption technology. MSDPI reduces the number of required changes to the entire
encryption device, helping to reduce costs and logistics. More important, with MSDPI, deployment
schedules can be dramatically reduced because encryption devices can be molded to networks without the
need to go through the entire operational approval process.

2 One can argue that financial organizations have as much concern for data protection as does the U.S. government.

However, for the scope of this discussion, the concern for data protection is limited to national interests only, that
is, protection of national secrets and human lives.

3 This is not to say the FASTLANE cannot be used to protect an IP network or HAIPEs cannot protect an ATM
network. As Ref. 3 points out, the KG-75A is perfectly capable of protecting IP networks. However, doing so
requires exploiting the concept of the “Sandwich” architecture detailed in the reference.

Exploiting the MSDPI 5

5 THE MULTI-SERVICE DOMAIN PROTECTING INTERFACE

One of the features of the Multi-Service Domain Protecting Interface demonstrated in this report is

an encryption system that separates the cryptographic function (which must be certified through an
expensive and time-consuming procedure) from the network interface function (which does not have to be
certified unless it is embedded in the device). The MSDPI demonstrates a network encryption device that
provides a seamless interface between the plain text domain (PTD) and cypher text domain (CTD) to
ensure that policy is fully supported. The MSDPI defines a technology that functions as an interface
between the network and the encryption engine, while still ensuring the two basic functions of a network
encryption device separating plain text (PT) from cypher text (CT) through a certifiable encryption
engine. The experiments reported here show how the MSDPI is multi-service by supporting both policy
control and security. The experiments demonstrate how the MSDPI supports a broad range of data flow
types and quality service contracts between peering domains and service provider domains while still
maintaining security policy of the user. The MSDPI uses a configurable technique to determine the
network structure and adapts to that technology at runtime. Simply put, MSDPI “wraps” the encryption
engine with the network technology in use at the time. This wrapping function is transparent to both the
encryption engine and the network. These experiments also touch on the MSDPI’s ability to adapt to
multiple network technologies dynamically. For example, by using the additional service capabilities built
into its architecture, the MSDPI simulated interfacing the encryption engine to an IP MultiProtocol Label
Switch (MPLS) traffic flow, then switched to a virtual local area network (VLAN) traffic flow, an
InfiniBand traffic flow, and an Ethernet network traffic flow. Each of these types of traffic has a unique
characteristic that is exploited by the MSDPI to trigger the point in a traffic flow where the encryption
engine cryptographic process begins.

The MSDPI architecture has two components that are used to achieve its goal. First, MSDPI relies

on pseudowire emulation (PWE) or similar technologies such as Layer 2 Virtual Private Network
(L2VPN). 3F

4 This provides the wrapping function of the data flow. The second key to the MSDPI
architecture is the Initiator-Responder function (I-R). 4F

5 I-R manages the data through the encryption
engine and provides the control plane function. I-R communicates all control instructions to the
encryption engine and network components. I-R communications is accomplished using the Session
Initiation Protocol (SIP) for Instant Messaging and Presence Leveraging Extensions (SIMPLE). Further,
I-R exploits SIP standard-based signaling, SIP authentication, and SIP policy and validation, securing
communications between the I-Rs. By using the I-R design, the encryption engine actions, and therefore
the data, are protected from compromise, disclosure, and denial of service.

6 MSDPI SERVICE CAPABILITIES

The SIP technology is used by the MSDPI architecture to improve control plane transport and

control. The MSDPI design is able to enhance the mechanism for controlling the actions of the encryption
device, the user data traversing a KG, exchange of router Routing Information Base (RIB) databases and
test set parameters. This design strengthens security by allowing control messages between local domains,
yet assures the separation of the local domain from the public domain while still assuring policy control
between the local domain and the public domain.

4 The MSDPI can use any technology; the criterion is simply to traverse from one network edge to another using a

known set header tag and information block size.
5 The names Initiator and Responder come from existing network encryption device terminology denoting which

network encryption device, taking on the role of the Initiator, begins the establishment of a security association
while the other, playing the role of the Responder, listens for and responds to startup request.

6 Christopher L. Robson

Additionally, since the MSDPI architecture makes extensive use of SIP, the architecture inherits, by
default, all the routing and security features of SIP to include authentication, authorization, encryption,
and message traffic controls and types. The experiments discussed in this report solidify MSDPI’s
enhanced capabilities for inter-domain peer establishment and maintainability of inter-domain
communications through improved inter-domain control plane communications and improved cross-
domain policy synchronization.

7 MSDPI USE OF MPLS

Today, MPLS paths (commonly referred to as label-switched paths, or LSPs) is a popular virtual

switching technology used by public network service providers and government agencies. LSPs provide
two fundamental benefits, the separation of traffic flows based on policy and cost. For example, LSPs can
provide a way to cost-effectively manage Voice Over IP (VoIP) traffic while also protecting the traffic
from service denials. For the U.S. government, this technology provides a good solution for transitioning
from circuit-based networks to converged IP networks. Further, it allows the government to segment
traffic based on policy. Where public networks generally use segmentation for billing and service
capabilities, U.S. government organizations such as the DoD and IC focus on segmentation for data
protection and nondisclosure. MPLS fits well within DoD/IC deployments because of its ability to
segment traffic flows while reducing the complexity of the technology needed to deploy IP infrastructure
in much the same way as other virtual circuit-based technologies, such as ATM. Because of these
benefits, MPLS is used here as a baseline for describing how the MSDPI architecture functions. Where
required, other transport technologies are highlighted. However, MPLS is not a requirement for using the
MSDPI within any device.

8 MSDPI DESIGN

8.1 Overview

Figure 2 illustrates the two-plane architecture of a network encryption device based on MSDPI, that

is, the control plane and the data plane. By dividing the device into the two planes, user data is protected
from exposure, yet policy still can be applied to both the plain text domain and the cypher text domain.
Further, since the user data path is established prior to the transmission of user data, there is minimal
impact on traffic performance by the control plane. This design exploits two prior technologies detailed in
Refs. 1 and 2. The MSDPI architecture is not limited to just the encrypting component but includes all
components that provide an interface between the encryption component and the surrounding networks or
hosts. Further, this architecture includes any networking component that will provide needed functions for
transporting traffic through the encrypting component, as depicted in Fig. 3. The MSDPI interface may
exist within a single unit or consist of many integrated units. The core components of the MSDPI are the
control plane, data transport input/output (I/O), traffic security flow component, and encryption engine.
Additional network components such as MPLS, Ethernet, VLAN, or InfiniBand protocol handling
components may or may not reside within the core unit. For example, the MPLS to IP transport mapping
function may reside in a typical ISP router and is sometimes referred to as an MPLS label switch router
(LSR) with the added MSDPI function within it. Figure 4 illustrates how a network with MSDPI network
encryption devices would be engineered.

Exploiting the MSDPI 7

Fig. 2 — MSDPI control plane and data plane

Fig. 3 — MSDPI detailed architecture

8 Christopher L. Robson

Fig. 4 — MSDPI network interface examples

8.2 SIP Control Plane Design Features

The control plane components experimented with and reported here were introduced in Ref. 1. That

publication details how the MSDPI control plane, by exploiting existing SIP technology, specifically
SIMPLE technology, was constructed to control various types of traffic flow such as IP traffic. A key
component in the interface is the Initiator-Responder. In the MSDPI encryption device architecture, it is
used to manage the PTD and CTD data and I/O components and the encryption engine. The boundaries of
the network encryption device discussed in this architecture are divided into two specific areas. One
boundary is set between the PTD and CTD as denoted at the point which user data is encrypted and
decrypted. The second boundary is between the Local Domain Control (LDC) and Public Domain Control
(PDC) and is the point at which local administration ends and traffic is controlled by another
administrative domain — for example, the handoff of a traffic flow between a local network and a service
provider network. As would be expected, LDC consists of all the functions managed by the local domain
authority and interfaces to any other private or public infrastructure. The PDC is anything managed by a
public network or outside the administrative control of the LDC. Another key distinction with a protected
LDC is that the LDC never transports LDC data and/or control information to the public network in an
unencrypted format (“in the clear”).

8.3 Network Interface

A feature of the MSDPI network encryption device architecture is the ability to interface to any

network infrastructure type, either locally administered or service provided. Figure 4 illustrates some

Exploiting the MSDPI 9

typical networks this network encryption device will interface to or bridge. The ability to interface to
multiple network types is possible because this network encryption device exploits the “Sandwich”
technology detailed in Ref. 3 and illustrated in Fig. 1. As Fig. 4 shows, one difference between the
configurations is the use of a label edge router (LER). An LER is a network component device that
generates or terminates a label switch path; typically it creates a label and prepends or extracts a label
from a transport flow. An LER is required when the MLS network encryption device is interfaced to a
non-MPLS network, thus the network encryption device is the LSP terminating device for the CTD
network. If the network encryption device is to function as a label switch router (LSR), it will interface to
MPLS networks through both of its domain interfaces and simply switch labels between the PTD and
CTD networks. This is not the case where the network encryption device interfaces to a non-MPLS CTD
network, such as an IP backbone network. In this case, the IP backbone interface will simply map the
MPLS network encryption device label into the transport mechanism employed. For example, the
network encryption device’s label would be mapped to an IPSec tunnel across the backbone. Typically,
this may involve simply establishing an interface route from the MPLS network encryption device egress
port to the IPSec tunnel ingress port.

8.4 Modular Design Features

Another feature of the MSDPI architecture is the modularity of each component. This is made

possible because of the I-R design using SIP MESSAGE methods for control plane communications
between components. Because each process is controlled by the I-R, the network ingress/egress can be
segmented out of the encryption engine (EE). For example, a high-speed router could perform the virtual
routing and forwarding (VRF) queuing function and for that matter data input/output function, separating
these processes from the encryption process into separate network systems. Synchronizing control
functions and controlled traffic flows in this type of architecture is accomplished by the SIP control plane
messages. However, the VRF, data I/O, and encrypting engine could very well be housed within a single
hardware component. The advantage of a single component is that only one SIP control plane process is
required for performing all the control plane processing. The disadvantage is that the encryption engine
and network components are integrated into a single hardware component, which will increase
development and deployment requirements and possibly require added and/or tuned hardware to meet
performance requirements.

8.5 SIP MESSAGE Dialog

8.5.1 SIP MESSAGE Subject Field

The SIP dialog used between the I-R processes is exactly as defined in Ref. 2. As in Ref. 2, the

architecture experimented with in the present report exploits the SIMPLE MESSAGE method technology
defined in RFC 3438 [4] and therefore has all the SIP functions and controls. The primary SIP SIMPLE
MESSAGE method used is the MESSAGE request. The MESSAGE request requires the subject to be a
question or answer. The format of the question subject must begin with the key word “Question” and the
answer subject line must begin with the key word “Answer.” Each of these subject line key words must
be followed by a message type and code such that a subject line format is: Question:[type]:[code] or
Answer:[type]:[code]. Each of the keys words must be separated by a “:”. Spaces are ignored. The “type”
key word designates the message type. For example, in Fig. 5 the type key word is “PTDNMSIR” and
designates that the message contains Plain Text Domain Network Management System Initiator-
Responder (PTD NMS I-R) query-response information. The code key word is a four-character number to
further signify the message function. Thus, in Fig. 5, the message is a query message, “Question,” for the
Plain Text Domain Network Management System Initiator-Responder daemon, given the tag
“PTDNMSIR” with the additional command, code “0005,” which may designate that the query message

10 Christopher L. Robson

contains a Presence Information Data Format (PIDF) (see Section 8.5.3) with label processing
instructions.

Fig. 5 — Example of an I-R MESSAGE dialog message

8.5.2 SIP MESSAGE Address Field

One of the power features of the MSDPI is the exploitation of the SIP Uniform Resource Identifier

(URI). The typical format of the URI is the form: <scheme name> : <hierarchical part> [? <query>] [#
<fragment>] (see RFC 3986 [5]). For MSDPI, the <scheme name> is always “sip”. The <hierarchical
part> portion of the URI is typically, but does not have to be, in the format “<user@>address:port”. Note
the field “<user@>” is optional, thus may be omitted. Most of the prototype MSDPI implementations do
not require this sub-field. For example, when the MSDPI SIP PTD Discovery Service device is
exchanging PTD data, it addresses the data to the target system with the URI in the IP format
“sip:<IP>:<port>” or specifically “sip:10.10.10.10:9999”. Since the address field is subjective, this field
may be an Ethernet MAC address, such as “sip:0a120b340d:9999”. It may use an InfiniBand address,
such as “sip:0x0002c9030000a60c:9999”. Or it may simply be an MPLS label, such as “sip:0001:9999”.
Therefore, the MSDPI URI format used is dictated by how the MSDPI URI is interfaced to the supporting
communications infrastructure.

8.5.3 SIP MESSAGE PIDF Format

As in Ref. 1, the MSDPI architecture discussed in the present report exploits the concept described

in the SIP SIMPLE standard and the use of the Presence Information Data Format to exchange SIP

Exploiting the MSDPI 11

MESSAGE documents.6 These PIDF documents contain the control plane messages passed between the
MSDPI I-Rs. The generic format of the PIDF used within this architecture is illustrated in Fig. 6. As in
the SIP SIMPLE PIDF specifications and in Ref. 1, it is suggested that in the MSDPI architecture, the
format of the message document be based on the Extensible Markup Language (XML) PIDF format
standard. However, if the XML format is used, all tags must start with “<” and end with “>” and a tagged
command must be terminated. For example, if a key word is shown as “<TAG>”, then the terminating
sequence for this tag must be “</TAG>”. Within the basic PIDF of this architecture the first key word is
“<network encryption device>” which identifies the network encryption device. By identifying the
network encryption device in the PIDF, the I-R process can be hosted locally and remotely and adds
further accountability to the message. Further, this identifier allows one network encryption device to
proxy message traffic for another possibly because of policy or access restrictions. The next important tag
is “<label>” which is used to signal a payload to the EE. Included in the PIDF is the “<payloadlength>”
tag which also is important information for the EE, letting the EE know where a payload terminates. The
“<ttl>” identifier allows a time constraint on the attached commands. This prevents lost commands,
which have been recovered, from overwriting retransmitted commands. Since the PIDF may hold more
than one Initiator-Responder daemon query-respond request, the requests are segmented by the tag
“<initiatorresponder>” and each daemon is segmented by the “<identifier>” tag. Figure 6 and Table 1
provide the other default tags found in the MESSAGE request and the function the tag performs. The
implementer is free to expand on any of the tags and tag values to best reflect the infrastructure
requirements being addressed. The “<checksum>” tag is used to assure message integrity. It is not within
the scope of this specification to determine this value; the value used is an implementation concern.

Fig. 6 — Basic I-R PIDF control MESSAGE

6 To get an understanding of how the I-R uses the PIDF, see Ref. 1. The format between the Initiator and the

Responder is governed by the specific configuration using the PIDF.

12 Christopher L. Robson

Table 1 — PIDF Tag Definitions

TAG FUNCTION

network encryption
device

Target network encryption device address

network encryption
device_ttl

PIDF time to live, when expired PIDF is ignored

database New database follows

initiatorresponder New Initiator-Responder control plane section

identifier Identifies the specific Initiator-Responder

label Label identifier, signals a bounded traffic flow to the EE

labellength Length of the label

payloadlength Length of the payload, this is required by the EE

type Identifies the label as source, destination, unidirectional, bidirectional

action How the Initiator-Responder is to process labels

status Initiator-Responder status

POC name/phone ISSO contact information

checksum Checksum or user authentication mechanism

9 MSDPI ARCHITECTURE

9.1 Component Definitions

To help clarify the discussion, we define some additional MSDPI component names shown in Fig. 3.

The Initiator-Responder used to control message traffic within the local domain control is called the Plain
Text Domain (PTD) Network Management System (NMS) and is referred to as the PTD NMS I-R. The I-
R that controls the local domain side Label Data I/O is referred to as the PTD I-R. The I-R controlling the
encryption engine is the EE I-R. The CTD Label Data I/O I-R is called the CTD I-R. CTD traffic
management and flow is managed and controlled by the CTD NMS I-R. Each of these components is
further defined in Section 9.5, Component Description.

9.2 Control Messages

As discussed above, all control message traffic between the I-Rs employs SIP SIMPLE MESSAGE

methods. For example, when the PTD NMS I-R is ready to notify the EE I-R that a new traffic flow is to
begin, it will build a PIDF document containing the appropriate control information needed by the EE to
begin encrypting or decrypting a traffic flow. Figure 7 is an example of a possible PTD NMS I-R SIP
SIMPLE MESSAGE PIDF. Table 2 provides a minimum set of PIDF message types and control codes
used by the I-R.

Exploiting the MSDPI 13

Fig. 7 — Example of PTD NMS I-R control message

Table 2 — Minimum Set of PTD I-R Type Codes

Message Type Control Code Function

PTDNMSIR 0001 PIDF with multiple policy options

PTDIR 0001 PIDF with multiple policy options

EEIR 0001 PIDF with multiple policy options

CTDIR 0001 PIDF with multiple policy options

CTDNMSIR 0001 PIDF with multiple policy options

9.3 Managing Policy Between MSDPI Interfaces

The MSDPI adheres to the concepts developed in Ref. 1 for managing policy. Typical policy

agreements might be access controls, authorizations, or QoS. All PIDF exchanges remain within the LDC
and peering MSDPIs. Each LDC PTD NMS I-R is responsible for negotiating policy between peering
MSDPIs. This includes any change in policy within the LDC that requires a renegotiation between
MSDPIs. Figure 8 illustrates this negotiation sequence. Through this design the control plane between
MSDPIs is secure. That is, to protect the exposure of PTD policy information from the public domain,
only peering MSDPI PTD NMS I-Rs or peering MSDPI CTD NMS I-Rs exchange policy information.
Fig. 9 illustrates the architecture of peering MSDPI policy dialog. Specifically, no information is
exchanged between the LDC PTD NMS I-R and LDC CTD NMS I-R or LDC PTD NMS I-R and a peer
MSDPI CTD NMS I-R. As Fig. 2 and Fig. 9 illustrate, there is no connection between the PTD NMS I-R
and the CTD NMS I-R. The assurance of policy between the PTD and CTD is by mapped (configured)

14 Christopher L. Robson

assignment. To illustrate this, the link between PTD MSDPI to peering PTD MSDPI may be divided into
several dissimilar policy (such as QoS) transport paths. These transport paths are then mapped (either
manually copied or dynamically initialized) to similar CTD MSDPI transport paths. For example, the
PTD may have three transport flows with QoS policy assignments of low-priority, best-effort, and
guaranteed 9F

7 services. To protect the disclosure of the type of policy assigned to any specific path, network
engineers typically then assign a common policy to all the paths between the CTDs (the PDC). For
instance, all the CTD paths will be given a guaranteed rate policy. Thus the traffic flow control is
established, controlled, and conducted within the protected LDC. The implementation of the mapping is
left up to the information security policy administrator. Fig. 10 is an example of the PIDF XML formatted
message to control traffic paths and traffic control for a particular path between peering MSDPI PTD
NMS I-Rs or CTD NMS I-Rs.

The most difficult challenge for DoD/IC networks is integrating an encryption device into a network

while still maintaining policy control. Typically, plain text domains have no easy method to set local
policy across or within cypher text domains. Therefore, the usual practice is to separate the PTD and CTD
control planes as previously stated. However, the MSDPI does provide a secure method of exchanging
policy across dissimilar domains. As illustrated in Fig. 11, policy can be accomplished through the strictly
controlled MSPDI protocol. Typically called a “one-way-transfer,” MSDPI is suited for this type of
configuration because its signaling protocol is specifically formatted, yet the contents can be dynamically
set to specific communications needs.

Fig. 8 — PTD NMS I-R to PTD NMS I-R policy negotiation

7 See RFC 1349 [6] for information on QoS within IP networks.

Exploiting the MSDPI 15

Fig. 9 — Example of peering LDC PTD NMS I-R policy flow

Fig. 10 — Example of LDC PTD NMS I-R to peer LDC PTD NMS I-R PIDF

16 Christopher L. Robson

Fig. 11 — MSDPI policy CONOPS

9.4 Encryption Device Peer Discovery

Encryption device peer discovery can be accomplished by either manually setting peer information

or by using an automated mechanism. Typically, manual discovery is the simple process in which one
network encryption device is statically initialized via a file or database with peer network encryption
device security association (SA) information. Automated peer discovery can be accomplished through
protocol management and exchange mechanisms. The dynamic peer discovery mechanism that must be
used in this design is specified in Refs. 1 and 2.

9.5 Component Description

This section describes each MSDPI I-R daemon and the function it performs.

9.5.1 LDC PTD Network Management System MSDPI Initiator-Responder

The LDC PTD Network Management System MSDPI Initiator-Responder (PTD NMS MSDPI I-R)

is possibly the most important component of this architecture. This is because it controls the actions of the
virtual routing and forwarding buffers (VRFBs, see Section 11 and Fig. 3), the PTD I-R, and indirectly
through the PTD I-R, the PTD Label Data I/O, the EE I-R, the EE, and the CTD I-R and CTD Label Data
I/O. Further, the LDC PTD NMS I-R will negotiate policy with peering LDC PTD NMS I-Rs. Figure 3
illustrates the connection architecture between each of the I-R daemons showing how the LDC PTD NMS
I-R, as the master daemon, controls all other I-R daemons within the LDC. Figure 12 illustrates the policy
negotiation sequence that takes place within the MSDPI. Figure 13 illustrates how the PTD NMS I-R
controls the other I-R and processing units (Label Data I/O or EE) either directly or by issuing and

Exploiting the MSDPI 17

responding to negotiation requests from the other component controlling I-Rs. In other words, when a
policy action is required to be executed by the MSDPI, the policy action begins from the LDC PTD NMS
I-R which directs the policy action to the LDC PTD I-R. The LDC PTD I-R, in turn, instructs the LDC
CTD I-R, which relays that action to its Data I/O component. After the PTD I-R receives the appropriate
SIP OK reply, it relays the action request to the LDC EE I-R which, in turn, relays the action to the EE.
Finally the LDC PTD I-R passes the policy action to its Label Data I/O and signals the LDC PTD NMS I-
R the policy has been established within all the MSDPI I-R daemons. The reason the LDC PTD NMS I-R
first issues the requested action to the LDC CTD I-R is to assure the network ingress interface, the CTD
Label Data I/O, can handle the policy request. In this way an acceptable policy can be relayed by the
MSDPI to the LDC network.

Fig. 12 — Initiator-Responder policy negotiation sequence

18 Christopher L. Robson

Fig. 13 — LDC I-R command flow

9.5.2 LDC PTD Initiator-Responder

The LDC PTD Initiator-Responder (PTD I-R) controls the actions of the LDC PTD Label Data I/O

and the LDC CTD I-R. It issues control commands to the CTD I-R using an I-R MESSAGE PIDF. To
provide status and notification feedback, the CTD I-R also uses the MESSAGE PIDF. A typical control
key word used in this PIDF is the queuing method employed by the implementer. For example, the
queuing method could be Random Early Detection (RED)10F

8 or even a simple first-in/first-out (FIFO)
buffer. SIP MESSAGE control is conveyed from the PTD NMS I-R to the PTD and indirectly to the CTD
I-Rs containing the PIDF message illustrated in Fig. 7 and Fig. 9. To assure the PTD Data I/O and the
CTD Data I/O queuing mechanisms are synchronized, when the PTD I-R receives the PIDF control
message, it issues, as illustrated in Fig. 12, the control message to the CTD I-R. Note the LDC PTD Data
I/O will not be signaled with a request until the CTD I/R receives an OK reply from the CTD Label Data
I/O to proceed. An example of a proceed message is the “Answer” type code “OK” as illustrated in Fig.
13. This sequence allows the LDC PTD I-R and CTD I-R to negotiate an agreeable policy to assure the
LDC PTD request will not overrun the capacity of the MSDPI ingress into the backbone network. Once
the MSDPI egress buffer (ingress buffer to the PDC network) control policy is established and the CTD
signals the LDC PTD I-R with the “Answer” type code “OK”, the LDC PTD I-R then issues the
negotiated command request to its Label Data I/O. When the PTD I-R’s Label Data I/O signals success of
this action back to the LDC PTD I-R, the PTD I-R can relay this success back to the LDC PTD NMS I-R.
If a successfully policy negotiation between any of the I-Rs cannot be established, resulting in termination
of the request, a negotiation failure is reported back to the LDC PTD NMS I-R. This results in the original
policy request termination, and the traffic path is not established. At this point the LDC must begin the
policy action again. Figure 14 illustrates this sequence of change policy events.

8 Random Early Detection is a congestion control mechanism used to control traffic. There are many such

mechanisms. The only concern this design has is providing a mechanism to convey the congestion control
mechanism between MSDPI peers.

Exploiting the MSDPI 19

The PTD (or CTD) I-R controls the action of the Label Data I/O either through the same mechanism
just described between the PTD I-R and CTD I-R using the PIDF or through an implementer design. This
is because the control of the Label Data I/O is inherently a hardware function typically calling for
hardware commands being issued and hardware status queries being processed by the PTD (or CTD) I-R.
Again, it should be pointed out, there is nothing stopping the implementer from continually using the
PIDF command/request scheme so far discussed as the mechanism used between the PTD I-R and the
Label Data I/O MSDPI component.

Fig. 14 — LDC I-R policy status/negotiation

9.5.3 MSDPI Encryption Engine Initiator-Responder

The Encryption Engine Initiator-Responder controls the actions of the encryption engine. For

example, but not necessarily an approved operational control action, the EE I-R may be instructed by the
PTD I-R to begin using a specific key management mechanism. Through the dialog between the PTD I-R
and the EE I-R as directed by the PTD NMS I-R, the EE will detect and begin the process of
cryptographically processing the data traffic. To control flows, the EE will signal the PTD I-R that it is
ready to accept traffic and then begin scanning input flows for label information.

9.5.4 MSDPI CTD Initiator-Responder

The CTD Initiator-Responder controls the action of the CTD Label Data I/O. It issues control

commands to the Label Data I/O using an I-R MESSAGE PIDF message or any mechanism developed by
the system implementer. To provide status and notification feedback, the Label Data I/O also uses the
MESSAGE PIDF or the mechanism associated to the hardware. To improve security, the CTD I-R has no
direct interface to the cypher text domain (PDC); it will not accept any control signaling from the CTD
and is only accessible from the PTD and is controlled by the PTD I-R. Figure 3 illustrates this, showing
the out-of-band control command arrow going from the PTD I-R to the CTD I-R. Having the PTD I-R
issue SIP MESSAGEs to the CTD I-R, which in turns conveys those SIP MESSAGEs to the CTD Label

20 Christopher L. Robson

Data I/O, assures the PTD Data I/O and the CTD Data I/O are synchronized. When a situation warrants
that the receiving MSDPI must change the actions of the sending MSDPI, the receiving MSDPI CTD I-R
issues a renegotiation request via its PTD NMS I-R to the sending PTD NMS I-R. This change request is
sent through the secure control path illustrated in Fig. 3 to the peering PTD NMS I-R. Typically the
change will request an adjustment be made to the transmitting VRFBs and/or sending Label Data I/O
queues. To signal this request, for example, the CTD I-R builds a MESSAGE PIDF with the key words
<action> set to “change” and possibly set the key word <QoS_offer> to some acceptable transmission
rate or the key word <queuing> to an acceptable queuing mechanism. This changed policy is then relayed
to the peering MSDPI.

9.5.5 CTD Network Management System Initiator-Responder

To provide information assurance (IA), the CTD Network Management System Initiator-Responder

is only accessible locally or through an existing security association between managed peering CTD NMS
I-Rs. Therefore, peering CTD NMS I-Rs will operate using approved access control and interfaces. For
example, peering CTD NMSs will use encrypted authenticated control channels to exchange control
information. Figure 3 illustrates this configuration with the out-of-band arrow which connects the CTD
NMS I-R to the “Secure VPN” channel. The primary function of the CTD NMS I-R is to manage the
LDC CTD virtual routing and forwarding buffer of the MSDPI.

10 CONTROL PLANE

This discussion further details MSDPI control plane messages, components, and control plane

protection scheme functionality. Control message traffic and the management of data traffic are reviewed.
Further, the discussion details a key component, the MSDPI label, explaining what it is and how it is
used. This section provides some details on typical PIDF control messages used between the I-Rs, and the
responses for those PIDF messages. Additionally, it describes the scheme used to protect control plane
paths.

10.1 Label

To understand how the MSDPI controls traffic flows, the reader needs to understand how the

MSDPI uses the protocol header of the traffic traversing the interface. Much like any encryption
architecture, the MSDPI takes a flow in from the LDC PTD and directs the EE subsystem to encrypt the
flow payload, then forwards the flow to the public network, the PDC CTD. Since the EE can be a
standalone component to the entire MSDPI system, the MSDPI needs to bound I/O flows so it can control
those flows. It does this by binding the flow to a “label.” The MSDPI architecture defines a label as any
header information within a traffic flow used to denote the established beginning of a traffic flow. The
MSDPI binds the ending of a flow by extracting out the length field of the original header. For example,
an MPLS traffic flow will have the packet length extracted from the IP header. This value, adjusted to
reflect the MPLS header and MSDI label length, is reported to the EE as the length of the MSDPI labeled
flow. The final total length value is inserted into the I-R PIDF tag field <payloadlength>. The
implementer is free to develop a manual mechanism for creating the MSDPI label. For example, a
database of labels could be used; for traffic flows into the MSDPI, the interface draws labels when needed
from that database on a per flow basis. Again, to assure peering MSDPIs are synchronized, the MSDPI
assigned as the session Initiator would be required to inform a peering Responder about any labels. Figure
15 illustrates the point where the MPLS header is designated as the MSDPI label thus establishing the
beginning of a flow and the point in which the EE is to begin encrypting or decrypting the traffic data.

Exploiting the MSDPI 21

Fig. 15 — MSDPI label encryption

There are other examples of how the traffic header can be transformed into an MSDPI label. The
mechanism used can be left up to the implementer. What is important is the label must be consistent
between MSDPI peers and operate between different implementations of the MSDPI. Besides MPLS, the
Ethernet MAC destination and/or source address (IEEE 802.3), the VLAN tag (IEEE 802.1Q), the
InfiniBand Layer 2 local routing header (LRH), and the InfiniBand Layer 3 global routing header (GRH)
can be used as an MSDPI label. For example, Fig. 16 and Fig. 17 illustrate, respectively, how the 802.1Q
tag and the InifiniBand LRH can be prefixed to the payload traversing the MSDPI so it can be presented
to the EE as an MSDPI labeled traffic flow.

Fig. 16 — 802.1Q MSDPI label

22 Christopher L. Robson

Fig. 17 — InfiniBand to MSDPI label mapping

10.2 Control Channels

The MSDPI can have three types of control channels, an in-band and/or out-of-band control channel.

The in-band channel is a transport path established within the same transport path used by the data traffic.
Typically the in-band path is segmented into separate paths, one for control traffic and one for data traffic.
The segmentation can be, but is not required to be, a separate VPN path between peering MSDPIs. Out-
of-band channels are those channels that have physically separate transport paths from the data transport.
In either case, the transport path is protected by approved transport security mechanisms such as a prior
established protected transport tunnel.11F

9 It is over these control channels the MSDPI exchanges PIDF
SIMPLE MESSAGEs.

9 The protection of the in-band or out-of-band control channel is out of the scope of this design. It is assumed that

approved mechanisms are used to protect control channels. For example, the out-of-band path may be a prior
established SSL VPN.

Exploiting the MSDPI 23

10.3 Example I-R PIDF Messages

As previously stated, the MSDPI exchanges control signaling through the use of a PIDF. The PIDF

contains control signals to manage the various subsystems of the network encryption device. For example,
the PTD NMS I-R will send a SIP message containing the PIDF illustrated in Fig. 18 or Fig. 19 to signal
the beginning of a traffic flow. This PIDF will contain information such as the length of the label, thus
providing to the EE the point within the traffic to begin encrypting or decrypting a flow. The following
PIDFs are examples of the various control messages. Again, the implementer is free to define what is
contained in the PIDF as long as it is an XML format as specified within this design and the format is
synchronized between all MSDPIs. In fact, the format can be defined at runtime by a site Information
Systems Security Officer (ISSO), providing additional security. The only constraint on the ISSO is that
the format must also include basic tags so the PIDF format does not impede the basic functionality of the
implemented network encryption device.

Fig. 18 — Example of PTD NMS I-R to PTD I-R PIDF

24 Christopher L. Robson

Fig. 19 — Example of PTD NMS I-R to VRFB PIDF

10.4 Securing the Control Plane

This MSDPI design secures the control plane by permitting write and read control signaling between

the LDC PTD NMS I-R and the PTD I-R, the PTD I-R and the Label Data I/O, and the PTD I-R and the
EE I-R, but permits only write control signals from the LDC PTD I-R to the LDC CTD I-R. These write
signals contain only MSDPI information validated by the PTD NMS I-R to manage the LDC CTD I-R
Label Data I/O. LDC CTD I-R status information is the only information sent to the PTD I-R which
allows policy negotiations. Further, no signaling is allowed from the PTD to the CTD other than control
signaling over a protected channel between peering MSDPI LDC PTD NMS I-Rs. By exploiting the
technology commonly referred to as the “Sandwich,” detailed in Ref. 2, controlled synchronization of
policy between the LDC PTD and the PDC CTD can be accomplished. As in the Sandwich, the MSDPI
statically maps control signal behavior of the PTD to the CTD, effectively mirroring, if appropriate, the
PTD policy within the CTD. However, it is not required that the CTD exactly mirror the PTD. In fact, the
ISSO may determine it necessary to configure the CTD differently from the PTD. The only restriction to
implementing the Sandwich is that peering MSDPIs must be configured with equal policy to include the
mapping behavior between the LDC and PDC and the mapping between peering MSDPIs.

To further secure the MSDPI control plane, local interfaces exploit an approved transport security

mechanism. For example, and not necessarily the mechanism to use, the transport security mechanism
used between the PTD NMS I-R and the PTD I-R may be IPSec or TLS. The security method deployed is
a matter for the ISO and system accrediting authority. This flexibility to integrate transport security
between I-Rs is an additional benefit the MSDPI provides to operational security.

Exploiting the MSDPI 25

11 DATA PLANE

11.1 Data Flow

The flow of data traffic, as illustrated in Fig. 2 and Fig. 3, flows from the PTD via an MPLS LSP

into the MSDPI VRFBs, then through the PTD Label Data I/O, through the Label Traffic Flow Security
Insert/Extraction (I/E)12F

10 to the EE. Then, from the EE, encrypted data flows to the CTD Label Data I/O
and finally through the CTD VRFB for controlled injection into the public network. Data traffic from the
public network follows the reverse path. It should be noted, the CTD VRFB inbound traffic is typically
treated as a simple priority queue if all the buffers have a common policy setting. As stated above, the
“Sandwich” architecture relies on the LDC PTD VRFB, and not the LDC CTD VRFB, to control traffic
congestion between MSDPIs.

11.2 PTD/CTD MSDPI Virtual Routing and Forwarding Buffers

The MSDPI control of data traffic flows consists of two basic functions in both the PTD and CTD:

the control of the data traffic and the data traffic. To control PTD traffic flow, the MSDPI uses the
concept of VRFBs as discussed in Ref. 2. The MSDPI VRFBs function similar to how L3VPN 13F

11 service
uses VRFs. That is, for L3VPNs, VRFs are used for routing; in the MSDPI case, a policy is assigned to a
specific VRFB. Therefore, traffic flowing through the MSDPI is controlled by the VRFB policy
assignments. Typically, the PTD VRFBs will have a policy assigned to a PTD MPLS LSP that is
originating from the PTD. Also, each CTD VRFB will be assigned to a CTD MPLS LSP. Then by
mapping a PTD label to a specific policy and associating the label to a CTD LSP, traffic flows between
MSDPIs can be controlled. This mapping may be accomplished by port-to-label, queue-to-label, or even
an implementer-specific mechanism. The method used is up to the implementer of the MSDPI. For
example, early implementers of the MPLS draft-Martini standard often mapped VCI/VPIs to an MPLS
LSP configured physical port. Thus any ATM traffic directed to leave via the port was wrapped into a
preassigned MPLS labeled IP packet, effectively mapping the VCI/PCI to a label, ergo a label switch
path.

11.3 PTD/CTD Label Data I/O

The PTD and CTD Data I/Os are the interface buffers which accept and transmit data traffic through

the encryption engine. The type of buffer queuing used is left up to the implementer. At a minimum, it is
assumed that a simple FIFO priority queuing mechanism will be deployed. The primary function of the
Label Data I/O is to manage congestion of data through the EE. The queuing mechanism used is not
within the scope of this specification and is left up to the implementer.

10 System administrators can determine if the Label Traffic Flow Security I/E needs to be activated in an MSDPI

device. It is included here to show where it sits within the data traffic flow through the MSDPI and how it
functions as a traffic flow concealing function.

11 L3VPN, Layer 3 Virtual Private Network, is defined in RFC 2547bis [7].

26 Christopher L. Robson

12 HARDWARE COMPONENTS

12.1 How an MSDPI FPGA Device Functions

Figure 20 illustrates a typical MSDPI programmed into hardware using any commodity field

programmable gate array (FPGA) device. For this example, the SIP PTD Discovery Device is used again.
Note that the PTD MSDPI communicates with the CTD MSDPI through the SIP MESSAGE PIDF. Using
the Q-A dialog, the MSDPIs peer and determine which data streams will be tagged and forwarded.

Fig. 20 — MSDPI programmed into hardware

Exploiting the MSDPI 27

12.2 How an MSDPI FPGA InfiniBand Device Functions

Figure 21 illustrates how the MSDPI FPGA device can be built as an MSDPI-based InfiniBand

switch. Since this is an InfiniBand switch, the RIB contains IB LRH and GRH addresses. Note also that
the label assignments use the LRH and GRH.

Fig. 21 — MSDPI InfiniBand switch

13 MSDPI CONCEPT OF OPERATIONS

Figure 22 illustrates a typical MSDPI peer-to-peer (P2P) operation and Fig. 23 illustrates a client-to-

server operation. Here the reader can see that the concept of operation is exactly like that within a typical
SIP session setup with the exchange of SIP “invite” query messages, “ringing” wait messages, and “200
OK” response messages. Part of this setup is the exchange of the PIDF which contains the session’s
policy information. Once the SIP dialog completes its process, user traffic can begin flowing in
accordance with the established policy parameters.

Like any P2P, the MSDPI assumes that P2P configurations are primarily used within local networks.

To scale the network, a tiered client-server configuration is suggested, as illustrated in Fig. 23. Therefore,

28 Christopher L. Robson

the SIP dialog between servers is exactly as the dialog between a local client and its local server. When a
client requests a session with a peer not within its local server, the server sends invites to its peering
servers.

In the client-server configuration illustrated in Fig. 23, a local OpenSIPS server is used to host the

various MSDPI clients. Clients register with the MSDPI server using the standard SIP protocol. Then
each provides to the server any policy information that pertains to its system’s running configuration
through the MSDPI protocol. Through the MSDPI protocol, client-server and P2P clients are updated
with peer policy data to include tiered servers and meshed clients. This is demonstrated in Fig. 23 which
depicts MSDPI signaling exchanges between OpenSIPS servers, the signaling exchange between the KGs
through the OpenSIPS proxy, and the signaling exchange between the router and the KG.

Fig. 22 — MSDPI peer-to-peer (P2P) CONOPS

Exploiting the MSDPI 29

Fig. 23 — MSDPI client-server CONOPS

30 Christopher L. Robson

13.1 MSDPI Warfighter Concept of Operations

Figure 24 demonstrates how the MSDPI would function within a deployed warfighter unit. This

capability was proven in the SIP Discovery Service Prototype (Ref. 2, paragraph 16) which simulated a
mobile network encryption device exchanging PTD data with a backbone network’s network encryption
device. Fig. 25 depicts a scenario of a hand-held device using services from a backbone services server as
it is switched from one local mobile services server to another mobile server. The MSDPI protocol
assures a seamless communications path during this scenario.

Fig. 24 — MSDPI warfighter CONOPS

Exploiting the MSDPI 31

Fig. 25 — MSDPI warfighter reconfigurability CONOPS

32 Christopher L. Robson

14 OPERATIONAL PROTOTYPE EXAMPLES

14.1 Prototype Testing, Architecture, and Commands

14.1.1 How the Prototypes Were Tested

To help demonstrate the concepts discussed in this design, a ping experiment was conducted. Ping is

a network diagnostic tool often used to determine the accessibility of one host to another. This experiment
included establishing encryption device peers. Note, the key management process and network encryption
device logistic deployment and installation were assumed to be established, and only the peer discovery,
peer configuration, peer synchronization, and data traffic flow, monitoring, and recovery were
demonstrated. Further note, the establishment of communication paths was static. That is to say, a
determined set of paths with known service level agreements were assumed. Also, to simplify the
experiment, it was assumed that all physical interfaces were initialized to include the secure establishment
of the out-of-band control channel between LDC MSDPIs. Additionally, liberties were taken with the
subsystems by assuming that several Linux subsystem functions simulated various components of the
MSDPI KG. For example, the NMS PTD I-R, PTD Label I/O, and MSDPI control plane interface
between these subsystems were simulated by the MSDPI daemon, MPLS-Linux subsystem, and the
interface between these Linux components.

The first task in the ping experiment was to establish communications between local LDC MSDPI I-

Rs. This was accomplished through the initialization of the PTD NMS I-R which was the first component
to run within the MSDPI and configured all the other I-Rs. The next action of the local MSDPI PTD
NMS I-R, when configured as an Initiator, was to begin negotiating service level agreements with a
Responder. No traffic traversed the MSDPI until the negotiation between MSDPI peers was successfully
completed. Finally, traffic policy between peering PTD NMS I-Rs was set during configuration. Then the
MSDPI Initiator initialized a security association. The MSDPI configured as a Responder performed any
LDC reconfiguration action required to synchronize with the Initiator. Once the policy was established
between all the I-Rs — that is, the VRFB assigned policy to egress and ingress label paths per the results
of the policy negotiations, the PTD I-R and the CTD I-R configured the Label Data I/Os according to the
resulting negotiation configuration instructions, and the peering MSDPIs established communication
paths — the ping was sent between systems. The VRFB then began, by a startup command from the PTD
NMS I-R, to accept the ping traffic. At that point the ping traffic began flowing from the VRFB to the
Label Data I/O and on to the EE, which began scanning the ping traffic, looking for the appropriate label
values and the point at which the EE was to begin the encryption process. After being encrypted, the ping
traffic was sent to the CTD Label Data I/O for output queuing and then to the CTD VRFB for placing into
the appropriate PDC LSP.

14.1.2 MSDPI Prototype Architecture

The prototypes developed for the FEON HSET program consist of three basic components, the

Initiator, the Responder, and the Functional Module. Figure 26 illustrates the relationship between the
prototype subsystems. For example, the Responder listens on a specified port for incoming SIP SIMPLE
MESSAGE traffic. When it receives a SIMPLE MESSAGE, it decodes the message subject line and calls
the appropriate Function Module based on the “type” code, passing any attached PIDF data to the
Function Module. Upon receiving a request from the Responder to begin processing a SIMPLE
MESSAGE, the Functional Module first decodes the command “code” subject line key word so it
understands how to process any attached PIDF data. If the SIP subject contains the “Question” key word
and the Functional Module has completed processing the incoming request, the Functional Module builds
a response SIP subject line containing the “Answer” key word and any appropriate “type” and command
“code” key word values. The Initiator is typically only run at system boot-up to initiate any startup dialog

Exploiting the MSDPI 33

between MSDPIs. For example, it may be used to initialize a security association between peering
MSDPI network encryption devices.

Fig. 26 — MSDPI prototype architecture

Prototypes have been developed as guides for implementing the MSDPI. A prototype was first
developed for the SIP-DS [2]. For the current effort, it was enhanced to support a distributed architecture.
For example, signaling between subsystems is accomplished through SIP MESSAGE PIDF exchanges
translated to Linux Netlink sockets. In fact, because the MSDPI architecture uses SIP MESSAGES for the
subsystem component design, the MSDPI can be distributed not only between subsystems within a single
operating system (OS), but also between multiple OS and hardware systems. The MSDPI prototypes
require several supporting subsystem libraries, such as the “Sofia-SIP” SIP development system, for
example. As Fig. 27 illustrates, the MSDPI links directly with the Linux Quagga Routing Information
Base subsystem, the Linux MPLS-Linux subsystem, and the Linux OpenVPN and IPSec VLAN services
subsystems. Essentially, MSDPI becomes the transport mechanism for these subsystems. For the RIB,
LSP, and IPSec databases, updates are accomplished through the MSDPI protocol.

34 Christopher L. Robson

Fig. 27 — MSDPI software architecture

14.1.3 MSDPI Commands

Table 3 lists the MSDPI commands. Because MSDPI exploits the Sofia-SIP application

programming interface (API) and its application called “Sofia-cli”, these commands are simply
extensions to that application’s command-line. This further demonstrates this architecture’s compliance to
existing SIP standards without modification. Basically, the commands are divided into SIP-related
commands and MSDPI-related commands. For example, the command “b[ye]” is a typical SIP command
and part of the Sofia-cli command set which terminates a SIP client connection with another SIP client or
server. “m[essage]” is another typical SIP command, which sends an attached message to a peer.

Some of the more widely used MSDPI commands include “ilptdd” which initializes the local plain

text domain database. The “saapplf” command sends an application PIDF to the targeted peer; used by the
MSDPI Test Master, this is how each client receives its test directives. Some other MSDPI commands
include Route Information Base data updates (how MSDPI performs router address updates), SNMP
information updates, IPSec parameter updates (secure VLAN configuration peer updates), plain text

Exploiting the MSDPI 35

domain database updates to network encryption device peers and, when enabled, other commands such as
MPLS configuration parameters and Juniper proxy configuration commands.14F

12

Generally, every MSDPI-specific command format is: <command> <URI> <options>. Only the help

and list commands exclude the URI and options. Table 3 lists the current MSDPI commands.

Table 3 — MSDPI Commands

COMMAND FUNCTION
addr <my-sip-address-uri> (set public address)
b (bye)
c (cancel)
hold <to-sip-address-uri> (hold)
i <to-sip-address-uri> (invite)
k <[method:\”realm\”:user:]password> (authenticate)
l (list operations)
m <to-sip-address-uri> (message)
to <to-sip-address-uri> (options)
ref <to-sip-address-uri> (refer)
r [sip-registrar-uri] (register)
u (unregister)
p [-] (publish)
up (unpublish)
set (print current settings)
s <to-sip-address-uri> (subscribe)
llappld <to-sip-address-uri> (List local in memory APPLication Dbase)
llptdd <to-sip-address-uri> (List local in memory PTD Dbase)
llscd <to-sip-address-uri> (List local in memory System Command Dbase)
llsnmpd <to-sip-address-uri> (List local in memory SNMP Dbase)
lrptdd <to-sip-address-uri> (List remote in memory PTD Dbase)
lrscd <to-sip-address-uri> (List remote in memory System Command

Dbase)
lrsnmpd <to-sip-address-uri> (List remote in memory SNMP Dbase)
llIPSt <to-sip-address-uri> (List local IPSec tunnel information)
clIPSt <to-sip-address-uri> (clear local IPSec tunnel information)
ilappld <to-sip-address-uri> [action code:0000(load only) or
0001(load & execute)] [local filename]

(Initialize local in memory APPLication Dbase)

ilptdd <to-sip-address-uri> [local filename] [action
code:0005(IPSec) or 0006(RIB)]

(Initialize local in memory PTD Dbase)

ilsnmpd <to-sip-address-uri> [local filename] (Initialize local in memory SNMP Dbase)
irptdd <to-sip-address-uri> [remote filename] [action
code:0005(IPSec) or 0006(RIB)]

(Initialize remote in memory PTD Dbase)

ilRIBt <to-sip-address-uri> [local filename] (Initialize local Route Information Base)
irRIBt <to-sip-address-uri> [remote filename] (Initialize remote Route Information Base)
ilsc <to-sip-address-uri> [action] [local filename]
[actions:0000(init only)0001(init & execute)]

(Initialize local in memory Raw system
commandline Dbase)

sqf <to-sip-address-uri> <TAG> <TYPE> <PIDF> <file> (Send question TAG:TYPE with or without
[PIDF file])

12 These last two commands are not shown in Table 3. To reduce the complexity of the system, some MSDPI

commands are built into the system only when needed to support specific environments.

36 Christopher L. Robson

Table 3 (cont.) — MSDPI Commands

COMMAND FUNCTION
saf <to-sip-address-uri> <TAG> <TYPE> <PIDF> <file> (Send answer TAG:TYPE with or without

[PIDF file])
saapplf <to-sip-address-uri> <TAG> <TYPE> <file> (Answer with APPLication database file:

/usr/local/SIPCP/etc/appl.xml)
sqapplf <to-sip-address-uri> <TAG> <TYPE> <file> (Question with APPLication database file:

/usr/local/SIPCP/etc/appl.xml)
saptdf <to-sip-address-uri> <TAG> <TYPE> <file> (Answer with Plain Text Domain database file:

/usr/local/SIPCP/etc/ptd.xml)
sqptdf <to-sip-address-uri> <TAG> <TYPE> <file> (Question with Plain Text Domain database file:

/usr/local/SIPCP/etc/ptd.xml)
sascf <to-sip-address-uri> SYSTEM <TYPE> <file> (Answer with SYSTEM database file:

/usr/local/SIPCP/systemcommand.xml)
sqscf <to-sip-address-uri> SYSTEM <TYPE> <file> (Question with SYSTEM database file:

/usr/local/SIPCP/etc/systemcommand.xml)
sasnmpf <to-sip-address-uri> <TAG> <TYPE> <file> (Answer with SNMP database file:

/usr/local/SIPCP/etc/snmp.xml)
sqsnmpf <to-sip-address-uri> <TAG> <TYPE> <file> (Question with SNMP database file:

/usr/local/SIPCP/etc/snmp.xml)
slptdd <to-sip-address-uri> <TAG> <TYPE> (Send local in memory PTD Dbase)
slsc <to-sip-address-uri> SYSTEM <TYPE> (Send local in memory Raw System command

Dbase)
slsnmpd <to-sip-address-uri> <TAG> <TYPE> (Send local in memory SNMP Dbase)
srptdd <to-sip-address-uri> <TAG> <TYPE> (Send remote in memory PTD Dbase)
srsnmpd <to-sip-address-uri> <TAG> <TYPE> (Send remote in memory SNMP Dbase)
itcl <to-sip-address-uri> [client list filename] (Initialize test client list:

/usr/local/SIPCP/etc/clientlist.xml)
ltcl <to-sip-address-uri> (List test client list)
ibt <to-sip-address-uri> [configuration file] <loop count> (Execute an IB test, file:

\”usr/local/SIPCP/etc/ibtest.cf\” contains
commandline)

sibpt <to-sip-address-uri> <configuration file> <mode> (server/client)
stsc <to-sip-address-uri> </usr/local/SIPCP/etc/testscript.xml> (Send test script)
rtag <to-sip-address-uri> <Subsystem TAG> <IP>:<Port> (Register subsystem TAG with proxy)
sdi <to-sip-address-uri> <Set default interface IP address>
ldi <to-sip-address-uri> <list default interface IP address>
sURI <to-sip-address-uri> <URI [IP:PORT]>
lURI <to-sip-address-uri> <list URI>
sst <to-sip-address-uri> <Set System TAG> (Set this system as either proxy (MSDPI) or

subsystem (PTD/TEST/SNMP))
lltags <to-sip-address-uri> (List local TAGs)
lrtags <to-sip-address-uri> (List TAGs on URI)
icp <to-sip-address-uri> <0, 1> <filename> (initialize console printing)
idp <to-sip-address-uri> <0, 1> <filename> (initialize data printing)
U (unsubscribe)
z (zap operation)
info
e|q|x (exit) <to-sip-address-uri>
h|? (help)

Exploiting the MSDPI 37

14.2 SIP Discovery Service Prototype

Figure 28 illustrates the first prototype test of the SIP PTD Discovery Service (SIP-DS). The SIP-

DS, the predecessor and functional equivalent to the MSDPI, is a software daemon that runs in Fedora
Linux-based laptops and rack-mounted computers. This prototype test simulated a typical HAIPE KG
IPSec15F

13 VLAN. This exercise demonstrated the SIP-DS (aka MSDPI) simulating the IPSec functionality
of a core HAIPE KG and also operating as an edge and mobile HAIPE device. As Fig. 28 depicts, the
SIP-DS interconnected IPSec tunnels between simulated KGs. Included in this configuration were
connected secure tunnels between backbone KGs and secure tunnels between mobile systems and edge
devices. Once all the IPSec tunnels were established by the SIP-DS KGs, traffic was exchanged between
the simulated command/analysis center, simulated imagery center, services center, and remote mobile
workstations. All SIP-DS XML configurations were built prior to deployment so that the system would
boot up into a functional running configuration.

Fig. 28 — SIP-DS prototype architecture

13 See RFC 2401 [8].

Core Backbone
SIP PTD KG
Label Switch Rtr

Core Backbone
SIP PTD KG
Label Switch Rtr Core Backbone

SIP PTD KG
Label Switch Rtr

Provider Edge
MPLS
Label Edge Rtr

SIP
Populated
Plain Text Domain
Core Database

SIP
Populated
Plain Text Domain
Core Database

SIP
Populated
Plain Text Domain
Core Database

Mobile
SIP PTD KG
LSR

Simulated
GIG

Backbone

Simulated
GIG

Edge

Simulated
GIG

Mobile

SIP PTD
DB Exchange

SIP PTD
DB Exchange

SIP PTD
DB Exchange

Provider
MPLS
Label Switch Rtr

Provider
MPLS
Label Switch Rtr

Mobile
Customer Edge

Router

FR4

Customer Edge
Router

Provider Edge
MPLS
Label Edge Rtr

Provider Edge
MPLS
Label Edge Rtr

Customer Edge
RouterCustomer Edge

Router

Customer
Services

Command / Analysis
Center

Imagery
Collection

SIP
Populated
PTD Core
Database

DREN

ISP

38 Christopher L. Robson

14.3 Commercial Product Prototypes

Figure 29 illustrates how MSDPI integrates with commercial products, using Bay Microsystems

components as an example. NRL has demonstrated the viability of running the MSDPI within an over-
the-counter network device without having to change the product’s development or operational
characteristics.

Fig. 29 — Example of an MSDPI commercial prototype

14.4 NRL Commercial Prototype

Figure 30 illustrates the first MSDPI FPGA prototype. The purpose of this development effort was to

build a republication system for prospective vendors wishing to learn how to implement the MSDPI. This
prototype used the sIXis Reconfigurable FPGA development system called the SY1000-DS. This system
consisted of several FPGA components, two designated as “ANDY” and “BARNEY” which processed all
system I/O. The processor responsible for all core MSDPI functions included a Xilinx Virtex 5
V5LX1100 called “CHARLIE.” The “C” and “D” FPGA components functioned as the EE I-R. Virtex 5
V5LX220 “A” and “B” functioned as the MSDPI NMS PTD/CTD I-R components. “A” and “B”
performed policy and label processing. As Fig. 30 shows, all intra/inter-system communication is through
the MSDPI protocol.

Exploiting the MSDPI 39

Fig. 30 — First MSDPI FPGA prototype

14.5 Bay Microsystems Product Prototype

14.5.1 Why the Bay Microsystems ABEx and NP10 Network Devices

The Bay Microsystems product line was selected as part of the FEON HSET program for two

reasons. First and foremost, Bay was willing to partner with the government for the integration of MSDPI
into their ABEx/NP10 network device. Second, like several other commercial products, the Bay product
exploits Buildroot.

14.5.2 Buildroot 14

The Buildroot is a set of Makefiles and patches that makes it easy to generate a complete embedded

Linux system. Buildroot can generate any or all of a cross-compilation toolchain, a root filesystem, a
kernel image and a bootloader image. Buildroot is useful mainly for people working with small or
embedded systems, using various CPU architectures (x86, ARM, MIPS, PowerPC, etc.): it automates the
building process of your embedded system and eases the cross-compilation process.

14 This section is a direct quote from the Buildroot home page: buildroot.uclibc.org.

40 Christopher L. Robson

The major Buildroot features are:
 Can handle everything in your embedded system development project: cross-compiling

toolchain, root filesystem generation, kernel image compilation and bootloader compilation.
Buildroot is also sufficiently flexible that it can also be used for only one or several of these
steps.

 Is very easy to set up, thanks to its menuconfig, gconfig and xconfig configuration interfaces,
familiar to all embedded Linux developers. Building a basic embedded Linux system with
Buildroot typically takes 15-30 minutes.

 Supports several hundreds of packages for userspace applications and libraries: X.org stack,
Gtk2, Qt, DirectFB, SDL, GStreamer and a large number of network-related and system-related
utilities and libraries are supported.

 Supports multiple filesystem types for the root filesystem image: JFFS2, UBIFS, tarballs,
romfs, cramfs, squashfs and more.

 Can generate an uClibc cross-compilation toolchain, or re-use your existing glibc, eglibc or
uClibc cross-compilation toolchain

 Has a simple structure that makes it easy to understand and extend. It relies only on the well-
known Makefile language.

Buildroot is maintained by Peter Korsgaard, and licensed under the GNU GENERAL PUBLIC

LICENSE V2 (Or later). Stable releases are delivered every three months.

14.5.3 Incorporating MSDPI into Buildroot for the ABEx/NP10

The following scripts were developed to build MSDPI for operation in the ABEx/NP10. Table 4 is

the Buildroot application package script responsible for the cross-compiling of the MSDPI application.

Table 5 is the required Sofia-SIP libraries compilation script. The MSDPI and Sofia-SIP Buildroot

menu scripts are found in Table 6 and Table 7. Following Buildroot procedures for adding user-specific
applications, the following edits and application-specific scripts were made and added to the Buildroot
scripts and build process.

1. The following entries were inserted into the file “Config.in” which resides within the package’s

root directory. These changes provide for the selections of the MSDPI and Sofia-SIP application
packages.

 - source “package/msdpi/Config.in”
 - source “package/sofiasip/Config.in”

2. The appropriate archive files “msdpi-08Dec10-0800.tar.gz” and “sofiasip-1.12.10.tar.gz” are

created and placed in the root directory ./buildroot/dl. Note, the filename of these files must match the
names used in the corresponding compilation script.

Exploiting the MSDPI 41

Table 4 — MSDPI Buildroot Package Compilation Script

MSDPI_VERSION:=08Dec10-0800
MSDPI_SOURCE:=msdpi-$(MSDPI_VERSION).tar.gz
MSDPI_SITE:=http://localhost/BUILDROOT
MSDPI_DIR:=$(BUILD_DIR)/msdpi-$(MSDPI_VERSION)
MSDPI_BINARY:=msdpi
MSDPI_TARGET_BINARY:=usr/bin/msdpi
MSDPI_MAKE_OPT = LIBS=“-lreadline -lncurses -lpthread -lgobject-2.0 -lgmodule-2.0 -lgthread-2.0 -
lrt -lglib-2.0 -lsofia-sip-ua -lsofia-sip-ua-glib”

$(DL_DIR)/$(MSDPI_SOURCE):
 $(call DOWNLOAD,$(MSDPI_SITE),$(MSDPI_SOURCE))
$(MSDPI_DIR)/.source: $(DL_DIR)/$(MSDPI_SOURCE)
 $(ZCAT) $(DL_DIR)/$(MSDPI_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) -
 touch $@
$(MSDPI_DIR)/.configured: $(MSDPI_DIR)/.source
 (cd $(MSDPI_DIR); rm -rf config.cache; \
 $(TARGET_CONFIGURE_OPTS) \
 $(TARGET_CONFIGURE_ARGS) \
 ./configure \
 --target=$(GNU_TARGET_NAME) \
 --host=$(GNU_TARGET_NAME) \
 --build=$(GNU_HOST_NAME) \
 --prefix=/usr \
 --sysconfdir=/etc \
)
 touch $@
$(MSDPI_DIR)/$(MSDPI_BINARY): $(MSDPI_DIR)/.configured
 $(MAKE) -C $(MSDPI_DIR)
$(TARGET_DIR)/$(MSDPI_TARGET_BINARY): $(MSDPI_DIR)/$(MSDPI_BINARY)
 $(MAKE) DESTDIR=$(TARGET_DIR) -C $(MSDPI_DIR) install-strip
 mkdir -p $(TARGET_DIR)/usr/local
 cp -dpf $(MSDPI_DIR)/src/msdpi $(STAGING_DIR)/usr/bin/msdpi
 cp -dpf $(MSDPI_DIR)/src/msdpi $(TARGET_DIR)/usr/bin/msdpi
 cp -dpfR $(MSDPI_DIR)/SIPCP $(STAGING_DIR)/usr/local
 cp -dpfR $(MSDPI_DIR)/SIPCP $(TARGET_DIR)/usr/local
 cp -dpfR /develop/BUILDROOT/BAY/target_skeleton/opt $(TARGET_DIR)/
 cp -udpR /develop/BUILDROOT/BAY/target_skeleton/etc/* $(TARGET_DIR)/etc
 cp -udpR /develop/BUILDROOT/BAY/target_skeleton/root $(TARGET_DIR)/
 cp -dpfR /develop/BUILDROOT/BAY/target_skeleton/persist $(TARGET_DIR)/
msdpi: uclibc ncurses $(TARGET_DIR)/$(MSDPI_TARGET_BINARY)
msdpi-source: $(DL_DIR)/$(MSDPI_SOURCE)
msdpi-clean:
 $(MAKE) prefix=$(TARGET_DIR)/usr -C $(MSDPI_DIR) uninstall
 -$(MAKE) -C $(MSDPI_DIR) clean

42 Christopher L. Robson

Table 5 — Sofia-SIP Buildroot Package Compilation Script

SOFIASIP_VERSION:=1.12.10
SOFIASIP_SOURCE:=sofiasip-$(SOFIASIP_VERSION).tar.gz
SOFIASIP_SITE:=http://localhost/BUILDROOT
SOFIASIP_DIR:=$(BUILD_DIR)/sofiasip-$(SOFIASIP_VERSION)
$(DL_DIR)/$(SOFIASIP_SOURCE):
 $(call DOWNLOAD,$(SOFIASIP_SITE),$(SOFIASIP_SOURCE))
$(SOFIASIP_DIR)/.source: $(DL_DIR)/$(SOFIASIP_SOURCE)
 $(ZCAT) $(DL_DIR)/$(SOFIASIP_SOURCE) | tar -C $(BUILD_DIR) $(TAR_OPTIONS) -
 touch $@
$(SOFIASIP_DIR)/.configured: $(SOFIASIP_DIR)/.source
 (cd $(SOFIASIP_DIR); rm -rf config.cache; \
 $(TARGET_CONFIGURE_OPTS) \
 CFLAGS=“$(TARGET_CFLAGS)” \
 ./configure \
 --target=$(GNU_TARGET_NAME) \
 --host=$(GNU_TARGET_NAME) \
 --build=$(GNU_HOST_NAME) \
 --prefix=/ \
 --includedir=/include \
 --libdir=/lib \
 $(SOFIASIP_CONFIG_SHARED) \
);
 touch $@
$(SOFIASIP_DIR)/.compiled: $(SOFIASIP_DIR)/.configured
 $(MAKE) -C $(SOFIASIP_DIR)
 touch $@
$(SOFIASIP_DIR)/.installed: $(SOFIASIP_DIR)/.compiled
 $(MAKE) DESTDIR=$(TARGET_DIR) -C $(SOFIASIP_DIR) install-strip
 cp -dpfR $(TARGET_DIR)/include/sofia-resolv $(STAGING_DIR)/usr/include/
 cp -dpfR $(TARGET_DIR)/include/sofia-sip $(STAGING_DIR)/usr/include/
 cp -dpf $(STAGING_DIR)/usr/lib/glib-2.0/include/glibconfig.h
$(STAGING_DIR)/usr/include/glibconfig.h
$(TARGET_DIR)/usr/include/glibconfig.h
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua-glib/.libs/libsofia-sip-ua-glib.so*
$(STAGING_DIR)/usr/lib
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua/.libs/libsofia-sip-ua.a $(STAGING_DIR)/usr/lib/
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua/.libs/libsofia-sip-ua.a $(TARGET_DIR)/usr/lib/
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua-glib/.libs/libsofia-sip-ua-glib.so*
$(STAGING_DIR)/lib
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua/.libs/libsofia-sip-ua.a $(STAGING_DIR)/lib/
 cp -dpf $(SOFIASIP_DIR)/libsofia-sip-ua/.libs/libsofia-sip-ua.a $(TARGET_DIR)/lib/
 touch $@
sofiasip: uclibc $(SOFIASIP_DIR)/.installed
sofiasip-source: $(DL_DIR)/$(SOFIASIP_SOURCE)
sofiasip-clean:
 $(MAKE) prefix=$(TARGET_DIR)/usr -C $(SOFIASIP_DIR) uninstall
 -$(MAKE) -C $(SOFIASIP_DIR) clean
sofiasip-dirclean:
 rm -rf $(SOFIASIP_DIR)
ifeq ($(strip $(BR2_PACKAGE_SOFIASIP)),y)
TARGETS+=sofiasip
endif

Exploiting the MSDPI 43

Table 6 — MSDPI Buildroot Package Config.in Menu Script

config BR2_PACKAGE_MSDPI
 bool “msdpi”
 help
 Multi-Service Domain Protecting Interface.
 http://localhost/BUILDROOT

Table 7 — Sofia-SIP Buildroot Package Menu Script

config BR2_PACKAGE_SOFIASIP
 bool “sofiasip”
 help
 Sofia SIP library.
 http://sofia-sip.sourceforge.net/download.html

14.5.4 Shortcomings to the Bay Microsystems Implementation of Buildroot

The Buildroot is always evolving to increase the feature sets it includes in its distribution so it

supports more applications and kernel updates and enhancements. Particularly, it provides new updates
that support hardware-specific additions as more and more product vendors incorporate Buildroot as their
product line operating system. This requires hardware manufacturers to actively provide updates to any
current Buildroot updates.

Further, MSDPI and Sofia-SIP exploit libraries that are incorporated into the latest Buildroot

releases. Unfortunately, the Bay Microsystems implementation of Buildroot corresponds to a release of
Buildroot prior to 2009, which does not support these libraries.

More important, Buildroot is updated to support the most current and stable release of Linux. Bay’s

distribution is currently (as of this writing) built against the Linux 2.6.19 release. MSDPI is built against
Buildroot release 2011 which supports a newer Linux release. Obviously the benefits to a newer Buildroot
include security enhancements as well as feature set enhancements such as utility libraries like “readline”
(only one of many MSDPI exploited libraries). However, in attempts to fully incorporate MSDPI within
the Bay product, the latest Buildroot Linux distribution was replaced with a Bay-supported Linux release.
Although this was successfully accomplished, what could not be completed was the inclusion of Bay’s
specific hardware drivers source code for the ABEx/NP10. This source code was not made available.

This has not prevented MSDPI from being cross-compiled for the ABEx/NP10 devices while still

using the 2011 Buildroot release. But it does prevent MSDPI from being completely integrated into the
ABEx/NP10 boot image, requiring instead that MSDPI be manually loaded into the device. Besides
increasing deployment time, this also has the result that MSDPI is not persistent at ABEx/NP10 reload.

44 Christopher L. Robson

14.6 NRL MSDPI DISN Policy Proxy Prototype

Figure 31 illustrates how the MSDPI has been developed to function as a policy proxy device for a

router used by the DoD within its Defense Information Systems Network (DISN) backbone network.
Here the MSDPI interfaces to a Juniper 10i via Juniper’s JUNOScript interface. MSDPI simply translates
its exchanged policy PIDF data into JUNOScript messages which are transmitted to a Juniper router via
its management interface. Since JUNOScript is also XML formatted messages, the translation process is
seamless.

Fig. 31 — DoD DISN policy proxy prototype

Exploiting the MSDPI 45

Table 8 consists of panels containing an extraction from the MSDPI code which is responsible for

communicating with a Juniper router through its management Ethernet interface. Panel 1 (reading left to
right) contains the series of canned XML tagged strings used to login into the router. Panel 2 shows an
“rpc” XML tagged load-configuration command which sets the router’s IP address. Just like the MSDPI
XML protocol, JUNOScript XML files contain tagged formatted commands. The following is a typical
JUNOScript tagged command:

<junoscript>
 <rpc [attributes]>
 <!-tag elements comment - ->
 <interface-state>enabled</interface-state>
 <input-bytes>25378</input-bytes>
 </rpc>
</junoscript>

Table 8 — MSDPI Juniper Policy Proxy Program Code

char *loginLine1 =
“<?xml version=\”1.0\” encoding=\”us-ascii\”?>\0”;
char *loginLine2 =
“<junoscript version=\”1.0\” hostname=\”MSDPI\”
release=\”8.1R1\”>\0”;
char *loginPass1 =
“<rpc><request-login><username>\0”;
char *loginPass2 =
“</username><challenge-response>\0”;
char *loginPass3 =
“</challenge-response></request-login></rpc>\0”;

char *setConfigLine1 =
“<rpc><load-configuration action=\”merge\”>
<configuration>\<interfaces>
<interface>
<name>ge-1/0/0</name>
<unit>\<name>0</name><family><inet><address>\<name>10.133.13
3.1/24</name></address></inet></family></unit>
</interface></interfaces></configuration>
</load-configuration>
</rpc>\0”;

pthread_join(clientJuniperLoginHandlerThreadID, NULL);
while(xmtCmdlinePtrs[sentRow]){
 send(juniperConnectionSocket,xmtCmdlinePtrs[sentRow],
 strlen(xmtCmdlinePtrs[sentRow]), 0);
 while(1){
 memset(¤tRcvBuffer[0], 0, currentRcvBufferLength);
 if((recvCharacterCount=recv(juniperConnectionSocket,
 ¤tRcvBuffer[0],currentRcvBufferLength, 0)) < 0){
 pthread_exit(NULL);}
 else{
 receivePtrs = receiveBufferPtrs;
 while(receivePtrs){
 previousReceivePtrs = receivePtrs;
 receivePtrs = receivePtrs->next;}
 receivePtrs = previousReceivePtrs;
 if((newReceivePtrs=malloc(sizeof(struct
receiveBuffer)))==NULL){
 printf(“Failed to allocate a receive buffer\n”);
 pthread_exit(NULL);}

if((newReceivePtrs->buffer =
 (char *)malloc(recvCharacterCount)) == NULL){
 printf(“Failed to allocate a receive buffer\n”);
 free(newReceivePtrs);
 pthread_exit(NULL);}
 receivePtrs->next = newReceivePtrs;
 newReceivePtrs->associatedReceiveSocket = 0;
 newReceivePtrs->next = NULL;
 strncpy(newReceivePtrs->buffer,¤tRcvBuffer[0],
 recvCharacterCount);
 newReceivePtrs->bufferLength = recvCharacterCount;
 newReceivePtrs->associatedReceiveSocket =
juniperConnectionSocket;
 if(strstr(newReceivePtrs->buffer,”</rpc-reply>“) != NULL){
 break;}}}
 if((strstr(newReceivePtrs->buffer,”<load-configuration-
results>“)!=NULL)&&
 (strstr(newReceivePtrs->buffer,”<load-success/>“) != NULL)){
 commitJuniperCommand = 0;}
 else{commitJuniperCommand = -1;}
 sentRow++;}
 printf(“\n\n%s\n”,(char *)&rcvReply[0]);

46 Christopher L. Robson

Table 8 (cont.) — MSDPI Juniper Policy Proxy Program Code

if(commitJuniperCommand==0){
 char *commitCommand = “<rpc><commit-
configuration><check/></commit-configuration></rpc>“;
 send(juniperConnectionSocket,commitCommand,
strlen(commitCommand),0);
 while(1){
 memset(¤tRcvBuffer[0], 0, currentRcvBufferLength);
 if((recvCharacterCount=recv(juniperConnectionSocket,
 ¤tRcvBuffer[0],currentRcvBufferLength, 0))<0){
 pthread_exit(NULL);}
 else{
 receivePtrs=receiveBufferPtrs;
 while(receivePtrs){
 previousReceivePtrs = receivePtrs;
 receivePtrs = receivePtrs->next;}
 receivePtrs = previousReceivePtrs;
 if((newReceivePtrs=malloc(sizeof(struct
receiveBuffer)))==NULL){
 printf(“Failed to allocate a receive buffer\n”);
 pthread_exit(NULL);}
 if((newReceivePtrs->buffer=
 malloc(recvCharacterCount))== NULL){
 printf(“Failed to allocate a receive buffer\n”);
 free(newReceivePtrs);
 pthread_exit(NULL);}
 receivePtrs->next = newReceivePtrs;
 newReceivePtrs->associatedReceiveSocket = 0;

 newReceivePtrs->next = NULL;
 strncpy(newReceivePtrs->buffer,¤tRcvBuffer[0],
 recvCharacterCount);
 newReceivePtrs->bufferLength=recvCharacterCount;
 newReceivePtrs-
>associatedReceiveSocket=juniperConnectionSocket;
 if(strstr(newReceivePtrs->buffer,”</rpc-reply>“) != NULL){
 if(strstr((char *)newReceivePtrs->buffer,”<commit-check-
success/>“)!=NULL){
 printf(“Commit check successful with: %s\n”,
 newReceivePtrs->buffer);}
 break;}
 else if(strstr((char *)newReceivePtrs-
>buffer,”<status>fail</status>“)!=NULL){
 printf(“Dialogue failure.\n”);
 pthread_exit(NULL);}
 else if(strstr((char *)newReceivePtrs->buffer,”</junoscript”) !=
NULL){
 printf(“Dialogue terminated with: %s\n”,
 newReceivePtrs->buffer);
 pthread_exit(NULL);}

 else if(strstr(newReceivePtrs->buffer,”<commit-check-success/>“)
!= NULL){
 printf(“Commit check successful with: %s\n”,newReceivePtrs-
>buffer);
 break;}}}
char *commitIt = “<rpc><commit-configuration/></rpc>“;
send(juniperConnectionSocket,commitIt, strlen(commitIt), 0);
while(1){
 memset(¤tRcvBuffer[0], 0, currentRcvBufferLength);
 if((recvCharacterCount=recv(juniperConnectionSocket,
 ¤tRcvBuffer[0],currentRcvBufferLength,0))<0){
 pthread_exit(NULL);}
 else{
 receivePtrs = receiveBufferPtrs;
 while(receivePtrs){
 previousReceivePtrs = receivePtrs;
 receivePtrs = receivePtrs->next;}
 receivePtrs = previousReceivePtrs;
 if((newReceivePtrs=malloc(sizeof(struct receiveBuffer)))==
 NULL){
 printf(“Failed to allocate a receive buffer\n”);
 pthread_exit(NULL);}

 if((newReceivePtrs->buffer =
 malloc(recvCharacterCount)) == NULL){
 printf(“Failed to allocate a receive buffer\n”);
 free(newReceivePtrs);
 pthread_exit(NULL);}
 receivePtrs->next = newReceivePtrs;
 newReceivePtrs->associatedReceiveSocket = 0;
 newReceivePtrs->next = NULL;
 strncpy(newReceivePtrs->buffer,
 (char *)¤tRcvBuffer[0],
 recvCharacterCount);
 newReceivePtrs->bufferLength = recvCharacterCount;
 newReceivePtrs->associatedReceiveSocket =
juniperConnectionSocket;
 if(strstr(newReceivePtrs->buffer,”</rpc-reply>“)!= NULL){
 if(strstr(newReceivePtrs->buffer,”<commit-success/>“) !=
NULL){
 printf(“Commit successful with: %s\n”,newReceivePtrs-
>buffer);}
 break;}
 else if(strstr((char *)newReceivePtrs-
>buffer,”<status>fail</status>“)!=NULL){
 printf(“Dialogue failure.\n”);
 pthread_exit(NULL);}

 else if(strstr((char *)newReceivePtrs-
>buffer,”</junoscript”)!=NULL){
 printf(“Dialogue terminated with: %s\n”,newReceivePtrs->buffer);
 pthread_exit(NULL);}
 else if(strstr((char *)newReceivePtrs->buffer,”<commit-
success/>“)!=NULL){
 printf(“Commit successful with: %s\n”,newReceivePtrs->buffer);
 }}}}
pthread_exit(NULL);
}

Exploiting the MSDPI 47

15 MSDPI AS A TEST SUITE

The MSDPI has proven to work well as a network test suite. Figure 32 demonstrates one of the

successful test runs using the MSDPI as a Test Master (server) and Test Client system for conducting the
InfiniBand test “ib_send_bw” (or sometimes referenced as “send_bw”). The MSDPI Test Master, using
the MSDPI protocol, transmits a test configuration PIDF to each MSDPI Test Client. The clients process
the configurations becoming either a listener or sender for the test. In this case the test is the ib_send_bw.
The Test Client’s MSDPI reads the PIDF files and spawns off either a listener ib_send_bw or sender
ib_send_bw. Each of these spawned subsystems functions exactly as the standalone version of
ib_send_bw17F

15 except the data is reported in a format suited for translation to a typical spreadsheet
application. Additionally, the MSDPI “perftest” utilities18F

16 have been enhanced to analyze and report on
IB call setup performance. This feature is not available with the standalone version of the perftest suite,
found only in the MSDPI subsystem version of the utilities. Further, the MSDPI utilities have the ability
to repeat each test, to include call setup as well as the iteration sequences. This can been seen in Fig. 33,
“Run Count,” which shows an executed test count of 1,146,653 runs with call setups and 1,146,653,000
test iterations, that is 1,000 iterations for each call setup.

The perftest tools consist of the following standalone utilities: send_bw, send_lat, read_bw, read_lat,

write_bw, write_lat, rdma_bw, and rdma_lat. Two of these utilities had particular interest for the initial
testing to be performed: send_bw and write_bw. Both these utilities send a stream of data from IB queue-
pairs (QPs). The main difference between these two is how the QP sending process is performed.
send_bw establishes a connection between IB hosts, then transmits a single QP. write_bw transmits a
group of QPs per connection. Since send_bw would exercise both MSDPI subsystem processes and
network bandwidth limitations, to include system interfaces and IB data transfer setup, it was selected as
the first utility to be integrated into MSDPI.

Although the perftest tools function without problems as standalone utilities, there were several

changes required before the tool suite could be integrated into the MSDPI system. It should be noted, all
the utilities are basically structured the same, that is, programming changes to one can be incorporated
into the others without too many changes. However, the changes for the first selected utility, in this case
send_bw, were substantial, resulting in unanticipated code development and testing. The most troubling
correction was that almost all memory allocation APIs required correction to prevent early termination of
the send_bw process when integrated into MSDPI. The next change required rewriting send_bw so it was
not a standalone utility but a subsystem to MSDPI. This meant modifications to the system main function,
essentially removing the main function and reworking all the command line inputs as subsystem
parameters. Additionally, APIs were developed between the MSDPI core system and the newly created
send_bw subsystem. This included SIP message processing and send_bw test data database processing.
Next, new timer routines were created to allow for synchronized testing between multiple MSDPI test
systems. A new timer feature allowed the tester to queue up several systems to begin testing at a specific
time. Another change was the reporting process. Fig. 34 illustrates the new reporting format which now
includes μsec time data.

Table 9 lists the listener command directives and Table 10 lists the sender command directives when

bundled into a test’s SIP message PIDF document. Most of the tagged 19F

17 directives are self explanatory. A

15 See the OFED for details on how the InfiniBand “perftest” utilities operate.
16 The “perftest” utilities typically include ib_send_bw, ib_send_lat, ib_read_bw, ib_read_lat, ib_write_bw,

ib_write_lat, ib_rdma_bw and ib_rdma_lat.
17 The reader should become familiar with the XML format to understand how the MSDPI exploits XML tags.

48 Christopher L. Robson

few should be noted such as the <current_time> and <start_time> tags. The <current_time>18 tag is used
by the MSDPI server to synchronize all client time to NTP time. The <start_time> informs the client to
begin the test processing at the designated time. <start_time> places the client in a wait-until-time-expires
loop. The <command> tag denotes the perftest to run and the <arguments> tag lists the command options
as found in the typical OFED perftest standalone application. As with the OFED version of the perftest
tools, test clients must be TCP Port paired. To clarify which listener a sender is peering with, an
additional command-line option “-h” was added. This option simply designates the listener’s IP address.

The last figure, Fig. 35, contains an example of an MSDPI ib_send_bw test and some of the

reporting data. This report details how the MSDPI ib_send_bw tool was used to report on the
performance of a QSFP-to-CX4 cable configuration. The test also demonstrated some problems with the
OFED release which were repaired in the MSDPI version. Fig. 34 is an example of typical ib_send_bw
test data collected and ready for formatting into a final test report.

Fig. 32 — MSDPI Test Master/Client configuration of IB tests

18 The <current_time> feature has not been fully implemented in the first release of MSDPI; therefore, it is assumed

all MSDPI clients are NTP clock synchronized.

Exploiting the MSDPI 49

Fig. 33 — Captured MSDPI IB test results

 TIME TEST RAN No. ITER PEAK AVG
 BYTES BW BW
 SENT
==
04-11-2011-11:28:20.894780: 65536 1000 3201.63 3200.00
04-11-2011-11:28:21.208097: 65536 1000 3200.46 2147.42
04-11-2011-11:28:21.672812: 65536 1000 3197.93 3196.36
04-11-2011-11:28:21.979729: 65536 1000 3202.12 3200.40
04-11-2011-11:28:22.556627: 65536 1000 3202.12 3200.45
04-11-2011-11:28:22.997049: 65536 1000 3200.21 3194.69
04-11-2011-11:28:23.454400: 65536 1000 3197.38 3194.31
04-11-2011-11:28:23.764796: 65536 1000 3201.69 3200.04
04-11-2011-11:29:19.560067: 65536 1000 3201.63 3199.93
04-11-2011-11:29:19.996219: 65536 1000 3201.75 3200.10
04-11-2011-11:29:20.458303: 65536 1000 3201.81 3200.14
04-11-2011-11:29:20.962138: 65536 1000 3196.27 3194.63

Fig. 34 — Captured output of MSDPI IB test results

50 Christopher L. Robson

Fig. 35 — Captured MSDPI IB QSFP-to-CX4 cable test results

Table 9 — MSDPI PIDF - ib_send_bw Listener Configuration File

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<system_commands>
<system>
<system_address>10.2.1.202</system_address>
<system_prefixlength>24</system_prefixlength>
<system_ttl>120</system_ttl>
<application>
<current_time>05-05-2011 06:15:00</current_time>
<current_time_usec>0000</current_time_usec>
<start_time>05-05-2011 06:15:00</start_time>
<start_time_usec>0000</start_time_usec>
<command>ib_send_bw</command>
<arguments>-p 19024 -b -n 1000 -m 2048 -I 400 -s 65536</arguments>
<mode>server</mode>
</application>
<system_command_poc>
<name>NRL</name>
<phone>111-111-1111</phone>
</system_command_poc>
</system>
<checksum>SHA-123456789</checksum>
</system_commands>

Demonstrated benefits from this test:
•μsec collection of data points
•Improved IB test performance
•Controlled execution time at real time
•Remote control of testing systems
•Efficient, simplified test scripting
•True performance (call setup)

Demonstrated problems with this test:
•Open source IB tool “ib_send_bw”

• Not thread safe (rewriting)
• Memory leaks (fixed)
• 7115 loop count failure (send

complete memory leak?)

Exploiting the MSDPI 51

Table 10 — MSDPI PIDF - ib_send_bw Sender Configuration File

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<system_commands>
<system>
<system_address>10.2.1.202</system_address>
<system_prefixlength>24</system_prefixlength>
<system_ttl>120</system_ttl>
<application>
<current_time>04-11-2011 05:00:00</current_time>
<current_time_usec>0000</current_time_usec>
<start_time>04-11-2011 11:04:00</start_time>
<start_time_usec>0000</start_time_usec>
<command>ib_send_bw</command>
<arguments>-p 19300 -h 10.2.1.218</arguments>
<mode>client</mode>
</application>
<system_command_poc>
<name>NRL</name>
<phone>111-111-1111</phone>
</system_command_poc>
</system>
<checksum>SHA-123456789</checksum>
</system_commands>

16 MSDPI L2TPV3 TEST FOR LARGE DATA JCTD

The following section outlines a modification to MSDPI to support a test for the Large Data Joint
Capability Technology Demonstration (JCTD) office. The purpose of the test was to validate the proper
operation of L2TPv3 within the Bay Microsystems ABEx network device. This MSDPI modification is
an example of MSDPI using the “system()” function to spawn a program that is not fully integrated into
the MSDPI core process. When MSDPI calls a program via the system() function, it is run as a separate
shell command.

16.1 L2TPv3

Layer 2 Tunneling Protocol Version 3 is for encapsulation of multiple protocols within a Layer 2

communications packet to traverse over IP networks. L2TPv3 provides a pseudo-wire service which
scales to fit within carrier requirements.

L2TPv3 can be regarded as being to MPLS what IP is to ATM: a simplified version of the same

concept, with much of the goodness achieved with a fraction of the effort, at the cost of losing some
technical features considered less important in the market. In the case of L2TPv3, the features lost are
teletraffic engineering features considered important in MPLS. The protocol overhead of L2TPv3 is also
significantly bigger than for MPLS. However, there is no reason why these features cannot be re-
engineered in or on top of L2TPv3 in later products.

52 Christopher L. Robson

16.2 Raw Collected Data

The following sections provide detailed Netperf19 data collection from the MSDPI L2TPv3 test. In

all charts of performance results, the horizontal axis is test number and the vertical axis is bandwidth.

16.2.1 Device Comparison Study

Table 11 defines six configurations that were to be tested; five of the six were tested. Figure 36 and

Fig. 37 show summary data from the five scenarios. The sections ahead provide more detailed data for
each test.

Table 11 — Test Configurations for the MSDPI L2TPv3 Test

B2BHost Two hosts directly connected

HKGH Two hosts connected through two network encryption devices

HABExH Two hosts connected through two Bay Microsystems ABEx network devices

HCKGCH Two hosts connected through two Cisco ASR1004 routers through two
encryption devices

HCABExCH Two hosts connected through two Cisco ASR1004 routers and two Bay
Microsystems ABEx network devices

HCABExKGABExCH Two hosts connected through two Cisco ASR1004 routers through two Bay
Microsystems ABEx network devices and two encryption devices

19 (Extracted from man) Netperf is a benchmark that can be used to measure various aspects of networking

performance. Currently, its focus is on bulk data transfer and request/response performance using either TCP or
UDP, and the Berkeley Sockets interface. In addition, tests for DLPI, and Unix Domain Sockets, tests for IPv6
may be conditionally compiled-in.

Exploiting the MSDPI 53

Fig. 36 — Test results from the five configurations

Test Recv

Socket
Size
bytes

Xmt
Socket

Size
bytes

Xmt
Msg
Size
bytes

Elpse
Time
secs.

Thruput
10^6b/s

Xmt
CPU
Util

Recv
CPU
Util

Xmt
Local
μs/KB

Recv
remote
μs/KB

TCP_STREAM
(transmit)

TCP_MAERTS
(received)

1 87380 65536 65536 60.01 9909.52 3.4 4.07 0.225 0.269 B2BHost xmit

2 87380 65536 65536 60.01 9910.27 4.98 3.78 0.329 0.25 B2BHost recv

4 87380 65536 65536 60 9287.49 17.02 44.01 0.601 0.776 HKGH xmit

5 87380 65536 65536 60.01 9419.26 19.14 35.71 0.666 0.621 HKGH recv

7 87380 65536 65536 60.01 9423.16 2.77 3.81 0.192 0.265 HABExH xmit

8 87380 65536 65536 60.01 9369.32 4.8 3.67 0.336 0.257 HABExH recv

10 87380 65536 65536 60.02 8379.84 16.1 44.5 0.63 0.87 HCKGCH xmit

11 87380 65536 65536 60.02 8355.83 20.39 31.56 0.8 0.619 HCKGCH recv

13 87380 65536 65536 60.01 8368.92 15.7 44.79 0.615 0.877 HCH xmit

14 87380 65536 65536 60.02 8355.57 20.23 32.12 0.793 0.63 HCH recv

Fig. 37 — Summary of L2TPv3 test results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7500

8000

8500

9000

9500

10000

10500

54 Christopher L. Robson

16.2.2 Host-to-Host Study

Table 12 and Fig. 38 present host-to-host performance data (B2BHost). This circuit has no network

devices or encryption devices. Therefore no packet data manipulation was performed.

Fig. 38 — Host-to-host performance results (B2BHost)

Table 12 — Host-to-Host Test Data

Test Recv
Socket
Size
bytes

Xmt
Socket
Size
bytes

Xmt
Msg
Size
bytes

Elpse
Time
secs.

Thruput
10^6b/s

Xmt
CPU
Util

Recv
CPU
Util

Xmt
Local
μs/KB

Recv
remote
μs/KB

TCP_STREAM
(transmit)
TCP_MAERTS
(received)

1 87380 65536 65536 60.01 9909.52 3.40 4.07 0.225 0.269 Transmit

2 87380 65536 65536 60.01 9910.27 4.98 3.78 0.329 0.250 Received

3 87380 65536 65536 60.01 9908.77 3.04 3.88 0.201 0.257 Transmit

4 87380 65536 65536 60.01 9910.32 4.94 3.64 0.327 0.241 Received

5 87380 65536 65536 60.01 9909.64 3.31 3.87 0.219 0.256 Transmit

6 87380 65536 65536 60.01 9910.28 5.51 3.75 0.364 0.248 Received

7 87380 65536 65536 60.01 9908.72 3.29 4.05 0.218 0.268 Transmit

8 87380 65536 65536 60.01 9910.31 5.17 3.67 0.342 0.242 Received

9 87380 65536 65536 60.01 9907.76 3.22 3.85 0.213 0.254 Transmit

10 87380 65536 65536 60.01 9910.29 4.98 3.63 0.329 0.240 Received

11 87380 65536 65536 60.01 9907.64 3.40 3.95 0.225 0.261 Transmit

12 87380 65536 65536 60.01 9910.31 5.05 3.77 0.334 0.249 Received

13 87380 65536 65536 60.01 9909.81 3.32 3.98 0.219 0.263 Transmit

14 87380 65536 65536 60.02 9910.27 5.13 3.63 0.339 0.240 Received

1
13

25
37

49
61

73
85

97
5

9 17
21 29

33 41
45 53

57 65
69 77

81 89
93 101

105
109

113
117

121
125

129
133

137
141

145
149

153
157

161
165

169
173

177
181

185
189

193
197

9905

9906

9907

9908

9909

9910

9911

Exploiting the MSDPI 55

16.2.3 Host–KG–KG–Host Study

Table 13 and Fig. 39 present host-to-host through back-to-back KGs performance data (HKGH).

This circuit has back-to-back Level 3 KG-245X devices between each host. This study was limited to
Dell 860 hosts; however, the host’s PCIe Gen2 slot was used with Myricom 10GE Fiber XFPs.

Fig. 39 — Host–KG–KG–Host performance results (HKGH)

Table 13 — Host–KG–KG–Host Test Data

Test Recv
Socket
Size
bytes

Xmt
Socket
Size
bytes

Xmt
Msg
Size
bytes

Elpse
Time
secs.

Thruput
10^6b/s

Xmt
CPU
Util

Recv
CPU
Util

Xmt
Local
μs/KB

Recv
remote
μs/KB

TCP_STREAM
(transmit)
TCP_MAERTS
(received)

1 87380 65536 65536 60.00 9323.19 16.88 44.07 0.593 0.775 Transmit

2 87380 65536 65536 60.00 9287.49 17.02 44.01 0.601 0.776 Transmit

3 87380 65536 65536 60.01 9419.26 19.14 35.71 0.666 0.621 Received

4 87380 65536 65536 60.01 9367.24 17.05 44.52 0.596 0.779 Transmit

5 87380 65536 65536 60.01 9378.41 19.12 35.71 0.668 0.624 Received

6 87380 65536 65536 60.00 9409.22 17.01 44.70 0.592 0.778 Transmit

7 87380 65536 65536 60.01 9378.50 19.18 35.70 0.670 0.624 Received

8 87380 65536 65536 60.00 9247.16 16.94 44.36 0.600 0.786 Transmit

9 87380 65536 65536 60.01 9340.68 19.29 35.56 0.677 0.624 Received

10 87380 65536 65536 60.01 9290.24 16.89 44.60 0.596 0.787 Transmit

11 87380 65536 65536 60.01 9381.07 19.25 35.91 0.672 0.627 Received

12 87380 65536 65536 60.00 9290.76 16.91 44.33 0.596 0.782 Transmit

13 87380 65536 65536 60.01 9378.46 19.22 35.78 0.671 0.625 Received

14 87380 65536 65536 60.01 9289.96 16.91 44.42 0.596 0.783 Transmit

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49

9150

9200

9250

9300

9350

9400

9450

56 Christopher L. Robson

16.2.4 Bay Microsystems Baseline Study

Table 14 and Fig. 40 present raw performance data collected with the Bay Microsystems ABEx 5010

inserted into the test bed circuit: host–ABEx–ABEx–host (HABExH).

Fig. 40 — Performance results for two hosts connected through two Bay Microsystems ABEx network devices (HABExH)

Table 14 — Host–ABEx–ABEx–Host Test Data

Test Recv
Socket
Size
bytes

Xmt
Socket
Size
bytes

Xmt
Msg
Size
bytes

Elpse
Time
secs.

Thruput
10^6b/s

Xmt
CPU
Util

Recv
CPU
Util

Xmt
Local
μs/KB

Recv
remote
μs/KB

TCP_STREAM
(transmit)
TCP_MAERTS
(received)

1 87380 65536 65536 60.01 9423.16 2.77 3.81 0.192 0.265 Transmit

2 87380 65536 65536 60.01 9369.32 4.80 3.67 0.336 0.257 Received

3 87380 65536 65536 60.01 9182.00 2.90 3.86 0.207 0.276 Transmit

4 87380 65536 65536 60.01 9469.60 5.11 3.77 0.354 0.261 Received

5 87380 65536 65536 60.01 9383.65 2.59 3.77 0.181 0.263 Transmit

6 87380 65536 65536 60.01 9401.74 5.37 3.71 0.374 0.259 Received

7 87380 65536 65536 60.01 9384.96 2.80 3.75 0.196 0.262 Transmit

8 87380 65536 65536 60.01 9336.22 5.42 3.88 0.380 0.272 Received

9 87380 65536 65536 60.01 9384.22 2.69 3.77 0.188 0.263 Transmit

10 87380 65536 65536 60.01 9104.79 5.00 3.69 0.360 0.266 Received

11 87380 65536 65536 60.01 9254.84 2.55 3.67 0.180 0.260 Transmit

12 87380 65536 65536 60.01 9270.70 5.21 3.71 0.368 0.262 Received

13 87380 65536 65536 60.01 9252.64 2.79 3.87 0.197 0.274 Transmit

14 87380 65536 65536 60.01 9237.59 4.97 3.68 0.352 0.261 Received

1 6121 41 81 101
6

11
16 26

31
36 46

51
56 66

71
76 86

91
96 106

111
116

121
126

131
136

141
146

151
156

161
166

171
176

181
186

191
196

8600

8800

9000

9200

9400

9600

9800

10000

Exploiting the MSDPI 57

16.2.5 Cisco Baseline Study

Table 15 and Fig. 41 present raw performance data collected with back-to-back Cisco ASR1004

routers inserted into the test bed circuit: host–ASR–KG–KG–ASR–host (HCKGCH).

Fig. 41 — Performance data for two hosts connected through two CISCO ASR1004 routers through two encryption devices

(HCKGCH)

Table 15 — Host–ASR–KG–KG–ASR–Host Test Data

Test Recv
Socket
Size
bytes

Xmt
Socket
Size
bytes

Xmt
Msg
Size
bytes

Elpse
Time
secs.

Thruput
10^6b/s

Xmt
CPU
Util

Recv
CPU
Util

Xmt
Local
μs/KB

Recv
remote
μs/KB

TCP_STREAM
(transmit)
TCP_MAERTS
(received)

1 87380 65536 65536 60.01 8368.92 15.70 44.79 0.615 0.877 Transmit

2 87380 65536 65536 60.02 8355.57 20.23 32.12 0.793 0.630 Received

3 87380 65536 65536 60.01 8371.20 15.69 44.82 0.614 0.877 Transmit

4 87380 65536 65536 60.02 8363.93 20.37 31.70 0.798 0.621 Received

5 87380 65536 65536 60.02 8369.13 15.75 44.82 0.617 0.877 Transmit

6 87380 65536 65536 60.02 8363.02 20.50 31.74 0.803 0.622 Received

7 87380 65536 65536 60.02 8369.12 15.75 44.74 0.617 0.876 Transmit

8 87380 65536 65536 60.02 8362.62 20.50 31.73 0.803 0.622 Received

9 87380 65536 65536 60.01 8370.36 15.72 44.87 0.615 0.878 Transmit

10 87380 65536 65536 60.02 8361.25 20.49 31.70 0.803 0.621 Received

11 87380 65536 65536 60.01 8372.21 15.82 44.93 0.619 0.879 Transmit

12 87380 65536 65536 60.02 8361.63 20.56 31.78 0.806 0.623 Received

13 87380 65536 65536 60.01 8369.08 15.70 44.82 0.615 0.878 Transmit

14 87380 65536 65536 60.02 8362.87 20.66 31.81 0.810 0.623 Received

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637

8345

8350

8355

8360

8365

8370

8375

58 Christopher L. Robson

16.2.6 Host, L2TPv3 VPN Device and Router Study

This test (HCABExCH), in which two hosts were to be connected through Cisco ASR1004 routers

and two Bay Microsystems ABEx network devices, was not performed. Therefore, there was no
resolution for the previous test, the Cisco baseline test.

16.2.7 Host, L2TPv3 VPN Device, Router with Network Encryption Device Study

Table 16 and Fig. 42 present raw performance data collected from two Dell 860 hosts connected

through two Cisco ASR1004 routers, two Bay Microsystems ABEx network devices, and two Level3 Red
Eagle KG-245X devices (HCABExKGABExCH).

Fig. 42 — Performance data collected from two Dell 860 hosts connected through two CISCO ASR1004 routers, two Bay
Microsystems ABEx network devices, and two Level3 Red Eagle KG-245X encryption devices (HCABExKGABExCH)

1
13

25
37

49
61

73
85

97
5

9 17
21 29

33 41
45 53

57 65
69 77

81 89
93 101

105
109

113
117

121
125

129
133

137
141

145
149

153
157

161
165

169
173

177
181

185
189

193
197

8240

8260

8280

8300

8320

8340

8360

8380

8400

Exploiting the MSDPI 59

Table 16 — Host–ASR–ABEx–KG–KG–ABEx–ASR–Host Test Data

Test Recv

Socket
Size
bytes

Xmt
Socket
Size
bytes

Xmt
Msg
Size
bytes

Elpse
Time
secs.

Thruput
10^6b/s

Xmt
CPU
Util

Recv
CPU
Util

Xmt
Local
μs/KB

Recv
remote
μs/KB

TCP_STREAM
(transmit)
TCP_MAERTS
(received)

1 87380 65536 65536 60.02 8379.84 16.10 44.50 0.630 0.870 Transmit

2 87380 65536 65536 60.02 8355.83 20.39 31.56 0.800 0.619 Received

3 87380 65536 65536 60.02 8359.12 15.55 44.42 0.610 0.871 Transmit

4 87380 65536 65536 60.02 8355.62 20.45 31.57 0.802 0.619 Received

5 87380 65536 65536 60.01 8359.99 15.52 44.20 0.608 0.866 Transmit

6 87380 65536 65536 60.02 8354.70 20.40 31.51 0.800 0.618 Received

7 87380 65536 65536 60.01 8359.32 15.52 44.37 0.609 0.870 Transmit

8 87380 65536 65536 60.02 8354.61 20.50 31.64 0.804 0.621 Received

9 87380 65536 65536 60.01 8359.79 15.54 44.55 0.609 0.873 Transmit

10 87380 65536 65536 60.02 8354.76 20.49 31.61 0.804 0.620 Received

11 87380 65536 65536 60.02 8358.48 15.58 44.28 0.611 0.868 Transmit

12 87380 65536 65536 60.02 8352.43 20.54 31.58 0.806 0.619 Received

13 87380 65536 65536 60.01 8359.48 15.66 44.56 0.614 0.873 Transmit

14 87380 65536 65536 60.02 8352.01 20.51 31.54 0.805 0.619 Received

16.3 L2TPv3 Test Conclusions

Without a clear resolution to the performance issues with the Cisco ASR router, no conclusive

results can be reported. However, it appears that without the ASR, host-to-host performance is not
adversely impacted with the ABEx implementation of L2TPv3. Therefore, it is assumed that if a router is
operating properly, the ABEx L2TPv3 protocol implementation should have no effect on traffic
performance.

17 MSDPI INFINIBAND SERVER-CLIENT TEST

The following test was conducted to collect bandwidth performance data between a single IB server

hardware platform, thus single IB interface, and multiple client hardware platforms. By using the
ib_send_bw subsystem test utility, three MSDPI ib_send_bw test clients began sending IB QPs to the
MSDPI ib_send_bw server at a predetermined time. For this test, startup was set to start at the same time
from all the client platforms.

17.1 System Configuration Overview

Figure 43 illustrates the test configuration. This configuration consisted of two Dell R610s and two

Dell R310s, named TD24, TD25, TD18, and TD30 for discussion purposes. One of the R610s, TD24,
acted as the MSDPI ib_send_bw server and the other three systems (TD25, TD18, and TD30) functioned

60 Christopher L. Robson

as ib_send_bw clients. The R610s are Intel 5500 series processors with Mellanox PCIe Connect X
MHZH29-XTR dual port IB/10GE network adapter cards. The specifications for this card are detailed in
Table 17.

Fig. 43 — InfiniBand startup performance test

Table 17 — InfiniBand Network Adapter Specifications

InfiniBand:

Ethernet:

QoS:

RDMA Support:
Data Rate

SFP+ Ethernet:
QSFP:

 InfiniBand:
PCI Express:

IBTA v1.2.1, Auto-Negotiation
(40Gb/s, 10Gb/s per lane), (20Gb/s,
5Gb/s per lane) or (10Gb/s, 2.5Gb/s
per lane)
IEEE Std 802.3ae 10 Gigabit Ethernet
IEEE Std 802.3ad Link Aggregation
and Failover
IEEE Std 802.3x Pause
IEEE Std 802.1Q VLAN tags
IEEE Std 802.1p Priorities
Multicast
Jumbo frame support (10KB)
128 MAC/VLAN addresses per port
8 Virtual Lanes for InfiniBand
8 Priority Queues for Ethernet
Yes, All Ports

10 Gb/s
40 Gb/s
2.0 SERDES @ 5.0 GT/s

Exploiting the MSDPI 61

17.2 Test Script Overview

Table 18 contains the MSDPI server configuration commands issued to activate each of the MSDPI

ib_send_bw test servers. The “icp” command prints diagnostic information on the MSDPI console which
shows current packet processing information as outlined in Section 15. For this test, three concurrently
executed MSDPI programs are run because the ib_send_bw subsystem, as of this writing, is not multi-
thread safe. Therefore, each of the three clients will access a predetermined associated ib_send_bw server
by using a separate, specifically assigned SIP and ib_send_bw port number.

Table 18 — Configuration Commands for Each MSDPI Server

$ sudo /usr/local/SIPCP/bin/msdpi --contact=sip:10.2.1.202:25060 --subsystemtag=APPL
--systemtag=APPL
MSDPI# icp sip:10.2.1.202:25060 1

$ sudo /usr/local/SIPCP/bin/msdpi --contact=sip:10.2.1.202:25061 --subsystemtag=APPL
--systemtag=APPL
MSDPI# icp sip:10.2.1.202:25061 1

$ sudo /usr/local/SIPCP/bin/msdpi --contact=sip:10.2.1.202:25061 --subsystemtag=APPL
--systemtag=APPL
MSDPI# icp sip:10.2.1.202:25061 1

The client configuration commands are shown in Table 19, Table 20, and Table 21. As with the

server, the MSDPI command “icp” instructs the subsystem to display diagnostic information about packet
processing. The command “idp” adds additional diagnostics by collecting, formatting, and then archiving
the processing information to a log file. This log file can later be exported to a spreadsheet application for
further analysis.

Table 19 — TD25 Configuration Command Entries

[TD25]# ./bin/msdpi --contact=sip:10.2.1.218:25060 --subsystemtag=APPL --systemtag=APPL
MSDPI# icp sip:10.2.1.218:25060 1
APPL> APPL> idp sip:10.2.1.218:25060 1 /usr/local/SIPCP/logs/13Jul11-0915

Table 20 — TD18 Configuration Command Entries

[TD18]# ./bin/msdpi --contact=sip:10.2.1.250:25061 --subsystemtag=APPL --systemtag=APPL
MSDPI# icp sip:10.2.1.250:25061 1
APPL> idp sip:10.2.1.250:25061 1 /usr/local/SIPCP/logs/13Jul11-0915

62 Christopher L. Robson

Table 21 — TD30 Configuration Command Entries

[TD30]# ./bin/msdpi --contact=sip:10.2.1.154:25062 --subsystemtag=APPL --systemtag=APPL
MSDPI# icp sip:10.2.1.154:25062 1
APPL> idp sip:10.2.1.154:25062 1 /usr/local/SIPCP/logs/13Jul11-915

Table 22 details the command directives issued by the MSDPI Test Master to each of the targeted

test systems (both the ib_send_bw server and clients). Each of the files transmitted (as an MSDPI SIP
SIMPLE message) contains the test parameter directives (in the MSDPI PIDF) to each of the ib_send_bw
servers and ib_send_bw clients. Again, note, the ib_send_bw servers are multiple MSDPI instances on the
same R610 hardware and each of these can run on separate hardware platforms.

Table 23 details the file contents for the servers and Table 24 for the clients. All the server and client

directives files are basically the same with only the system address, port, and ib_send_bw port values
changed. Each client’s time tags are configured to the same start time.

Table 22 — MSDPI Test-Master Test Script Command Entries

MSDPI# saapplf sip:10.2.1.202:25060 APPL 0001 /usr/local/SIPCP/etc/TD24-19200-server-only-
ib_send_bw.xml
MSDPI# saapplf sip:10.2.1.202:25061 APPL 0001 /usr/local/SIPCP/etc/TD24-19201-server-only-
ib_send_bw.xml
MSDPI# saapplf sip:10.2.1.202:25062 APPL 0001 /usr/local/SIPCP/etc/TD24-19202-server-only-
ib_send_bw.xml
MSDPI# saapplf sip:10.2.1.218:25060 APPL 0001 /usr/local/SIPCP/etc/TD25-19200-client-
ib_send_bw.xml
MSDPI# saapplf sip:10.2.1.250:25061 APPL 0001 /usr/local/SIPCP/etc/TD18-19201-client-
ib_send_bw.xml
MSDPI# saapplf sip:10.2.1.154:25062 APPL 0001 /usr/local/SIPCP/etc/TD30-19202-client-
ib_send_bw.xml

Exploiting the MSDPI 63

Table 23 — MSDPI ib_send_bw Server Test Script Parameter Directives File

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<system_commands>
<system>
<system_address>10.2.1.202</system_address>
<system_prefixlength>24</system_prefixlength>
<system_ttl>120</system_ttl>
<application>
<current_time>07-13-2011 08:00:00</current_time>
<current_time_usec>0000</current_time_usec>
<start_time>07-13-2011 08:00:00</start_time>
<start_time_usec>0000</start_time_usec>
<command>ib_send_bw</command>
<arguments>-p 19200</arguments>
<mode>server</mode>
</application>
<system_command_poc>
<name>NRL</name>
<phone>111-111-1111</phone>
</system_command_poc>
</system>
<checksum>SHA-123456789</checksum>
</system_commands>

Table 24 — MSDPI ib_send_bw Client Test Script Parameter Directives File

<?xml version=“1.0” encoding=“ISO-8859-1”?>
<system_commands>
<system>
<system_address>10.2.1.218</system_address>
<system_prefixlength>24</system_prefixlength>
<system_ttl>120</system_ttl>
<application>
<current_time>07-13-2011 09:15:00</current_time>
<current_time_usec>0000</current_time_usec>
<start_time>07-13-2011 09:15:00</start_time>
<start_time_usec>0000</start_time_usec>
<command>ib_send_bw</command>
<arguments>-p 19200 -h 10.2.1.202</arguments>
<mode>client</mode>
</application>
<system_command_poc>
<name>NRL</name>
<phone>111-111-1111</phone>
</system_command_poc>
</system>
<checksum>SHA-123456789</checksum>
</system_commands>

64 Christopher L. Robson

17.3 Raw Test Data

Table 25, Table 26, and Table 27 contain raw data samples from the ib_send_bw client test systems,

TD25, TD18, and TD30.

Table 25 — Sampling of TD25 Raw Test Data

0714201106 0.609263 65536 1000 3207.08 3205.38
0714201106 0.090296 65536 1000 3203.86 3202.24
0714201106 0.454187 65536 1000 3204.85 3203.16
0714201106 0.868280 65536 1000 2913.13 1711.43
0714201106 0.397521 65536 1000 3205.03 3203.36
0714201106 0.764565 65536 1000 3204.97 3203.31
0714201106 0.215541 65536 1000 3205.03 3203.35
0714201106 0.652488 65536 1000 2995.10 1714.71
0714201106 0.095433 65536 1000 3204.97 3203.31
0714201106 0.637530 65536 1000 3206.58 3204.93
0714201106 0.160539 65536 1000 3205.03 3203.34
0714201106 0.663229 65536 1000 3204.17 3202.50
0714201106 0.101206 65536 1000 3205.22 3203.60
0714201106 0.546593 65536 1000 3205.03 3203.39
0714201106 0.990263 65536 1000 3204.85 3203.18
0714201106 0.455288 65536 1000 3205.47 3203.74
0714201106 0.741435 65536 1000 3205.16 3203.51
0714201106 0.106228 65536 1000 3205.03 3203.41
0714201106 0.551517 65536 1000 3202.87 3201.27
0714201106 0.045490 65536 1000 3205.10 3203.47
0714201106 0.477092 65536 1000 3205.28 3203.65
0714201106 0.967527 65536 1000 3204.91 3203.22
0714201106 0.414128 65536 1000 3205.22 3203.60
0714201106 0.965537 65536 1000 3205.28 3203.60
0714201106 0.375228 65536 1000 3204.66 3202.97
0714201106 0.791527 65536 1000 3203.98 3202.37
0714201106 0.319448 65536 1000 3205.03 3203.37
0714201106 0.686031 65536 1000 3205.53 3203.85
0714201106 0.135537 65536 1000 3205.16 3203.50
0714201106 0.686875 65536 1000 3202.63 2165.21
0714201106 0.063536 65536 1000 3205.10 3203.44
0714201106 0.453276 65536 1000 2728.41 1706.81
0714201106 0.911633 65536 1000 3204.85 3203.21
0714201106 0.283328 65536 1000 3204.73 3203.08
0714201106 0.754639 65536 1000 3204.91 3203.27
0714201106 0.149205 65536 1000 3205.10 3203.47
0714201106 0.697527 65536 1000 3203.92 3202.32
0714201106 0.102147 65536 1000 3207.26 3205.44
0714201106 0.532335 65536 1000 3205.47 3203.78

Exploiting the MSDPI 65

Table 26 — Sampling of TD18 Raw Test Data

0714201106 0.530554 65536 1000 1887.00 1886.98
0714201106 0.988534 65536 1000 1730.72 1730.72
0714201106 0.383229 65536 1000 3206.24 3204.61
0714201106 0.869228 65536 1000 3206.24 3204.58
0714201106 0.276967 65536 1000 3206.38 3204.75
0714201106 0.813975 65536 1000 3206.24 3204.56
0714201106 0.261216 65536 1000 3206.17 3204.51
0714201106 0.710624 65536 1000 1206.19 1206.19
0714201106 0.171515 65536 1000 3206.31 3204.67
0714201106 0.629222 65536 1000 3206.45 3204.76
0714201106 0.042224 65536 1000 3206.17 3204.55
0714201106 0.527228 65536 1000 3206.11 3204.45
0714201106 0.898241 65536 1000 3205.97 3204.28
0714201106 0.361816 65536 1000 3206.17 3204.49
0714201106 0.820216 65536 1000 3206.52 3204.87
0714201106 0.350225 65536 1000 3206.17 3204.47
0714201106 0.877161 65536 1000 3205.97 3204.34
0714201106 0.445205 65536 1000 3206.11 3204.45
0714201106 0.938605 65536 1000 1701.57 1701.57
0714201106 0.305242 65536 1000 3206.24 3204.61
0714201106 0.726167 65536 1000 3204.73 3197.98
0714201106 0.093256 65536 1000 3206.24 3204.57
0714201106 0.461260 65536 1000 3206.11 3204.36
0714201106 0.843026 65536 1000 2138.78 2138.75
0714201106 0.189748 65536 1000 3204.80 3203.16
0714201106 0.669289 65536 1000 3205.76 3204.07
0714201106 0.115138 65536 1000 3206.17 3204.48
0714201106 0.562282 65536 1000 3206.11 3204.43
0714201106 0.972065 65536 1000 3205.28 3197.67
0714201106 0.375242 65536 1000 3206.24 3204.53
0714201106 0.853318 65536 1000 3206.11 3204.46
0714201106 0.368227 65536 1000 3206.04 3204.36
0714201106 0.737896 65536 1000 3198.84 3197.33
0714201106 0.119207 65536 1000 3206.04 3204.35
0714201106 0.532148 65536 1000 3206.24 3204.61
0714201106 0.912224 65536 1000 3206.17 3204.49
0714201106 0.481330 65536 1000 3203.09 3197.62
0714201106 0.891216 65536 1000 3206.11 3204.40
0714201106 0.337228 65536 1000 3206.11 3204.39

66 Christopher L. Robson

Table 27 — Sampling of TD30 Raw Test Data

0714201106 0.524646 65536 1000 3193.89 1884.77
0714201106 0.991458 65536 1000 3110.61 1728.73
0714201106 0.426906 65536 1000 3199.08 3194.02
0714201106 0.801497 65536 1000 3200.31 3198.51
0714201106 0.239535 65536 1000 3200.45 3198.61
0714201106 0.690697 65536 1000 3200.58 3198.79
0714201106 0.143489 65536 1000 3200.51 3198.70
0714201106 0.707965 65536 1000 3185.66 1274.11
0714201106 0.210500 65536 1000 3200.65 3198.86
0714201106 0.591458 65536 1000 3200.65 3198.84
0714201106 0.092456 65536 1000 3200.45 3198.63
0714201106 0.626259 65536 1000 3187.63 1838.63
0714201106 0.102481 65536 1000 3200.58 3198.77
0714201106 0.656687 65536 1000 3199.49 3190.17
0714201106 0.106635 65536 1000 3199.69 3197.90
0714201106 0.495810 65536 1000 3200.58 3198.77
0714201106 0.947475 65536 1000 3200.65 3198.82
0714201106 0.367142 65536 1000 3200.58 3198.77
0714201106 0.942057 65536 1000 1701.12 1701.11
0714201106 0.502477 65536 1000 3200.38 3198.56
0714201106 0.888724 65536 1000 3199.01 2201.42
0714201106 0.341469 65536 1000 3199.76 3197.98
0714201106 0.838187 65536 1000 3199.01 2135.32
0714201106 0.258691 65536 1000 3200.65 3198.84
0714201106 0.713832 65536 1000 3199.83 3198.09
0714201106 0.253916 65536 1000 3194.91 1910.23
0714201106 0.730165 65536 1000 3200.58 3198.75
0714201106 0.214758 65536 1000 3200.51 3198.70
0714201106 0.707476 65536 1000 3200.45 3198.60
0714201106 0.290457 65536 1000 3200.45 3198.69
0714201106 0.822458 65536 1000 3200.24 3198.42
0714201106 0.423476 65536 1000 3200.58 3198.84
0714201106 0.956022 65536 1000 3200.17 3198.33
0714201106 0.363948 65536 1000 3200.24 3198.41
0714201106 0.854810 65536 1000 3200.45 3198.64
0714201106 0.310500 65536 1000 3200.38 3198.54
0714201106 0.722478 65536 1000 3200.58 3198.74
0714201106 0.179676 65536 1000 3200.51 3198.68
0714201106 0.624819 65536 1000 3200.38 3198.55

Exploiting the MSDPI 67

17.4 Test Data Analysis

While this test was only for a short duration, the raw data confirms all systems began the

ib_send_bw test within a second of each other but not at the precise microsecond. Further, it appears the
first system, TD25, reached full bandwidth use within its first iteration cycle while TD18 and TD30 began
at a lower bandwidth allocation but quickly settled into full use within the first or second iteration cycle.
Table 28 contains the first three iteration cycles from TD25, TD18, and TD30. Two runs for each system
are shown. Figure 44 shows the performance at startup and Fig. 45, Fig. 46, and Fig. 47 reflect the first 39
iterations from each of the clients. In the data charts, the horizontal axis is time and the vertical axis is
bandwidth.

Table 28 — First Three Iteration Cycle Data

TD25 Run 1
0713201109 0.365101 65536 1000 3200.16 3198.55
0713201109 0.755907 65536 1000 3204.91 3203.20
0713201109 0.132535 65536 1000 3205.34 3203.68
TD25 Run 2
0714201106 0.609263 65536 1000 3207.08 3205.38
0714201106 0.090296 65536 1000 3203.86 3202.24
0714201106 0.454187 65536 1000 3204.85 3203.16

TD18 Run 1
0713201109 0.423747 65536 1000 2887.18 1720.69
0713201109 0.890068 65536 1000 3206.17 3204.50
0713201109 0.294175 65536 1000 3206.04 3204.35
TD18 Run 2
0714201106 0.530554 65536 1000 1887.00 1886.98
0714201106 0.988534 65536 1000 1730.72 1730.72
0714201106 0.383229 65536 1000 3206.24 3204.61

TD30 Run 1
0713201109 0.423264 65536 1000 1723.58 1723.56
0713201109 0.801590 65536 1000 3200.38 3198.54
0713201109 0.176824 65536 1000 3199.35 3197.55
TD30 Run 2
0714201106 0.524646 65536 1000 3193.89 1884.77
0714201106 0.991458 65536 1000 3110.61 1728.73
0714201106 0.426906 65536 1000 3199.08 3194.02

68 Christopher L. Robson

Fig. 44 — Startup comparison data

Fig. 45 — TD25 test data

Exploiting the MSDPI 69

Fig. 46 — TD18 test data

Fig. 47 — TD30 test data

70 Christopher L. Robson

17.5 Rerunning the Test Data Analysis

The previous test demonstrated some problems with the Dell R310 servers, so the tests were

executed again after some hardware changes. The Dell R310s were replaced with Dell R610s. Table 29
and Fig. 48, Fig. 49, Fig. 50, and Fig. 51 report the test data results (horizontal axis is time, vertical is
bandwidth).

Table 29 — First Three Iteration Cycles Reevaluated

TD25 Reevaluation Run 1
393376 3203.56
839052 3203.55
322047 3203.33

TD26 Reevaluation Run 1

06376426 3198.97
06811610 3204.34
06294440 3204.70

TD28 Reevaluation Run 1

481924 3193.51
957261 3204.43
440251 3204.66

Fig. 48 — Reevaluation of the startup comparison data

Exploiting the MSDPI 71

Fig. 49 — TD25 re-test data

Fig. 50 — TD26 re-test data

72 Christopher L. Robson

Fig. 51 — TD28 re-test data

17.6 Test Data Conclusion

It appears that the R610, with its faster multi-threaded processor, has advantages for initial IB packet

processing. But caution must be observed when analyzing this data, as pristine laboratory controls over
system heat, hardware characteristics, power fluctuations, and external traffic such as SNMP and SSH
sessions, are only a few factors that may contribute to performance. For example, the MSDPI clients were
remotely accessed, which meant an SSH session was in progress. Also, IB uses IP/TCP to set up a QP
transfer. This further delays IB when TCP connections are delayed due to system resource allocation
issues. Although using a separate interface, system resources (CPU, memory, and PCIe bus) were still
being used. Further, there was no way to accurately measure the impact of the InfiniBand switch on the
test performance. For these tests, it was observed that approximately 10% of IB interface performance is
impacted by these “other” resources. To obtain test data not affected by outside influences, systems
outside the funding scope of this program would be required. For normal DoD/IC operational
configurations for systems that do not have critical timing issues, these test results are more than
adequate.

Exploiting the MSDPI 73

18 MSDPI ENGINEERED INTO A LIVECD DISTRIBUTION

18.1 Linux LiveCD

A LiveCD is a Linux custom-configured bootable CD or DVD which when booted runs a complete

operating system without requiring a secondary storage device such as a hard drive. In this case, a Fedora
15 (or 14) bootable DVD image (ISO format) contains the MSDPI system, the directory tree
/usr/local/SIPCP, and several MSDPI XML configuration files.

18.2 MSDPI LiveCD

The reason for creating an MSDPI LiveCD is to have a test environment that has control of the

operating environment, taking full advantage of the rich feature set of a Fedora 15/14 MSDPI
environment yet still preserving the existing system’s previous operating system state. For example, a
typical DoD Linux server runs a Red Hat 5.5 distribution specifically configured for a particular agency
mission. Sometimes when debugging I/O hardware performance problems, the interface in question may
require test configurations that are best implemented without interference from other synchronous running
programs. This dedicates system resources, such as I/O and processor cycles, to the test program. Test
scenarios can be executed without delays from other applications. Further, a LiveCD establishes the test
tool has a highly mobile diagnostic utility, reducing deployment time. For example, the need to build
multiple versions of MSDPI that are compatible with every version of Linux distribution is not required.
Further, not every Linux distribution includes all the open source runtime libraries that MSDPI exploits.
For example, Sofia-SIP is MSDPI’s core SIP processing system. While Fedora supports a native
installation, other distributions do not include it, therefore requiring Sofia-SIP to be compiled for each of
those distributions. Another advantage is the ability to keep the MSDPI system up to date with the latest
releases not only of MSDPI changes but of the exploited open source libraries. Further, enhancements of
newly developed technologies, such as the Bay Microsystems L2TPv3 test discussed in this report, are
quickly integrated into the MSDPI system. Since MSDPI has been set up as a LiveCD, added security can
easily be incorporated by locking down the distribution so that only MSDPI is accessible and further
enhanced to allow only a particular test configuration to be performed. In so doing, not only is security
improved for testing, but any user with no test experience can be instructed to boot the LiveCD, while the
experienced tester tests and subsequently retrieves the resulting test data remotely, as discussed in Section
15.

18.3 MSDPI LiveCD Feature Sets

MSDPI’s LiveCD current feature set includes the following:

1. “perftest” “send_bw” test subsystem which performs bandwidth diagnostics between two or

more IB hosts.
2. Any shell run-able Linux command, for example, Netperf.

18.4 How to Build an MSDPI LiveCD

The following steps detail how an MSDPI bootable LiveCD is created, assuming the development

environment is Fedora 14 (or 15) and the proper rpmbuild environment has been initialized.

1. Create an rpm repository for the MSDPI system. This is required because the LiveCD process
retrieves the MSDPI system from the repository.

74 Christopher L. Robson

a. Create a yum repository file named “msdpi.repos” and place it in the directory
/etc/yum.repos.d/. Figure 52 illustrates the contents of the file.

b. Create a repository directory and run the command: createrepo /path-to-your-msdpi-
repository. Typically, this path is within the http server (in this case Cherokee) directory
tree, for example: /var/www/cherokee/msdpi-repos.

2. Now create an MSDPI rpm file to be used by the LiveCD build process.

a. Create rpmbuild specification files with the information detailed in Fig. 53 and Fig. 54.
b. Place the specification files in the appropriate rpmbuild directory, ~/rpmbuild/SPECS.
c. Place a copy of the MSDPI archive files in the appropriate rpmbuild directory,

~/rpmbuild/SOURCES.

3. The name of these files and the directories they archived must match the filename designation

specified in the rpmbuild specification files.

a. Run the command line sequence: rpmbuild -bb –target=`uname -m` ./[msdpi specification
file].

b. Copy the built rpm files to the MSDPI repository created in the above yum repository
creation instructions (step 1).

c. Recreate the repomd metadata file by reissuing step 1b from the yum creation process
above.

4. The last thing to do is build the LiveCD ISO image and burn onto a DVD or USB drive. Since

the size of the ISO file is more than 640 MB, a DVD must be used.

a. Create a kickstart file with the data shown in Fig. 55.
b. Edit the kickstart file to reflect the interfaces and hostname of the target system.
c. Issue the command to create the ISO image: livecd-creator --config=msdpi.ks --

fslabel=MSDPI –cache=/var/cache/live.
d. Burn the ISO image MSDPI.iso to DVD using any installed DVD writer program (for

example, GnomeBaker). Typically, by placing a blank DVD in the DVD writer, the
default DVD writer program auto-loads. If a USB bootable LiveCD is being created,
issue the command line sequence: livecd-iso-to-disk --format --reset-mbr MSDPI.iso
/dev/[USB device].

[msdpi]
name=local
baseurl=http://localhost/msdpi-repos/
enabled=1
gpgcheck=0

Fig. 52 — Example of the MSDPI repository file

Exploiting the MSDPI 75

Name: msdpi
Version: 30.06.11
Release: 1%{?dist}
Summary: Multi-Service Domain Protecting Interface
License: GPL+
URL: http://localhost/develop/SIPCONTROLPLANE
Source0: http://localhost/develop/SIPCONTROLPLANE/%{name}-%{version}.tar.gz
BuildRequires:
Requires:
%description
The MSDPI program, SIP Control Plane.
%prep
%setup -q
%build
%configure --prefix=/usr/local/SIPCP
make %{?_smp_mflags}
%install
rm -rf $RPM_BUILD_ROOT
make install DESTDIR=$RPM_BUILD_ROOT
mkdir -p $RPM_BUILD_ROOT/usr/local/SIPCP/bin
cp %{_builddir}/%{name}-%{version}/src/msdpi $RPM_BUILD_ROOT/usr/local/SIPCP/bin
%clean
rm -rf $RPM_BUILD_ROOT
%files
%defattr(-,root,root,-)
%doc
/usr/local/SIPCP/bin/msdpi
%changelog

Fig. 53 — Example of the MSDPI rpmbuild specification file

76 Christopher L. Robson

Name: msdpi-packages
Version: 30.06.11
Release: 1%{?dist}
Summary: Multi-Service Domain Protecting Interface Packages
License: GPL+
URL: http://localhost/develop/SIPCONTROLPLANE
Source0: http://localhost/develop/SIPCONTROLPLANE/%{name}-%{version}.tar.gz
BuildRequires:
Requires:
%description
The “MSDPI program, SIP Control Plane packages includes those necessary files to build a complete LiveCD system
For example, adding various configuration files: ifcfg-eth?, ifcfg-ib?, openvpn config and key files.
NOTE: Each of the LiveCDs are built to represent a specific system configuration to include the system name,
interface parametrers (aka IP address), openvpn files, specific files in the etc/sysconfig directory.
%prep
%build
%install
rm -rf $RPM_BUILD_ROOT
mkdir -p $RPM_BUILD_ROOT/usr/sbin
mkdir -p $RPM_BUILD_ROOT/etc/rdma
mkdir -p $RPM_BUILD_ROOT/etc/init.d
mkdir -p $RPM_BUILD_ROOT/usr/local/sbin
mkdir -p $RPM_BUILD_ROOT/usr/local/bin
mkdir -p $RPM_BUILD_ROOT/usr/local/SIPCP
cp -R /develop/LIVECD/SIPCP/* $RPM_BUILD_ROOT/usr/local/SIPCP
cp -R /develop/LIVECD/ETC/rdma/* $RPM_BUILD_ROOT/etc/rdma
cp /develop/LIVECD/ETC/init.d/rdma $RPM_BUILD_ROOT/etc/init.d/rdma
cp /usr/sbin/opensm $RPM_BUILD_ROOT/usr/sbin/opensm
%clean
rm -rf $RPM_BUILD_ROOT
%files
%defattr(-,root,root,-)
%doc
/usr/local/SIPCP/bin/ib_clock_test
/usr/local/SIPCP/bin/ib_rdma_bw
/usr/local/SIPCP/bin/ib_rdma_lat
/usr/local/SIPCP/bin/ib_read_bw
/usr/local/SIPCP/bin/ib_read_lat
/usr/local/SIPCP/bin/ib_send_bw
/usr/local/SIPCP/bin/ib_send_lat
/usr/local/SIPCP/bin/ib_write_bw
/usr/local/SIPCP/bin/ib_write_bw_postlist
/usr/local/SIPCP/bin/ib_write_lat
/etc/init.d/rdma
/etc/rdma/fixup-mtrr.awk
/etc/rdma/mlx4.conf
/etc/rdma/opensm.conf
/etc/rdma/rdma.conf
/etc/rdma/setup-mlx4.awk
/usr/sbin/opensm
/usr/local/SIPCP/sbin/netperf.sh
/usr/local/SIPCP/bin/netperf
/usr/local/SIPCP/bin/netserver
/usr/local/SIPCP/bin/msdpi
/usr/local/SIPCP/sbin/msdpiclientsh
/usr/local/SIPCP/sbin/msdpish
/usr/local/SIPCP/etc/SITE-A_server-only-ib_send_bw.xml
%changelog

Fig. 54 — Example of the MSDPI package rpmbuild specification file

Exploiting the MSDPI 77

%include /usr/share/spin-kickstarts/fedora-livecd-desktop.ks
repo --name=local --baseurl=http://localhost/msdpi-repos/
%packages
msdpi-packages
%end
%post
FIXME: it’d be better to get this installed from a package
cat > /etc/sysconfig/network-scripts/ifcfg-eth0 << EOF
DEVICE=eth0
#HWADDR=00:22:68:1E:E2:80
ONBOOT=yes
NM_CONTROLLED=yes
IPADDR=10.128.112.6
BOOTPROTO=none
NETMASK=255.255.255.0
TYPE=Ethernet
GATEWAY=10.128.112.1
IPV6INIT=yes
USERCTL=yes
PREFIX=24
DNS1=10.1.1.1
EOF
cat > /etc/sysconfig/network << EOF
NETWORKING=yes
HOSTNAME=FARP.atd.net
NTPSERVERARGS=iburst
NOZEROCONF=yes
EOF
cat > /etc/sysconfig/vncservers << EOF
VNCSERVERS=“50:msdpi-user”
EOF
%end

Fig. 55 — Example of the MSDPI package LiveCD kickstart file

19 WORK OUTSTANDING

There are still many enhancements and improvements to be made to MSDPI, including the

following.

1. In the original FY11 project plan established by the sponsor, required network components were

to be purchased by the sponsor and delivered to NRL so that certain tests could be completed.
To date, the equipment has not been delivered, preventing NRL from conducting planned tests
such as the following:

a. IB-to-WAN scenario testing as it relates to DoD/IC network configurations.
b. Synchronized IB timing tests between multiple end systems.
c. File system over 40G IB interface network tests using the DoD-compliant OS, Red Hat

5.5. NRL subscription licenses for Red Hat Server/Client software have expired, further
impacting test execution.

78 Christopher L. Robson

2. Complete several IB test tool modifications to take full advantage of NRL’s enhanced perftest
modifications. These IB test tool modifications were not scoped within the FY11 tasking but
have since been determined to be of importance for inclusion in any further follow-on work.

a. Apply “send_bw” program fixes to the other IB tool sets (read_bw, read_lat, write_bw,
write_lat, rdma_bw, rdma_lat, send_lat).

b. Modify the IB tool sets for threaded operation.
c. Complete the integration of the rest of the IB tool sets within MSDPI. Currently only

“send_bw” is fully integrated.
d. Include other IP test tools so they are fully integrated into MSDPI (not as subsystem shell

commands). For example and most important is the full integration of the Netperf tool
set. Other examples include incorporating tools such as ping, modifying SIP SIMPLE
MESSAGE messages as ping-like exchanges, and incorporating Test TCP (TTCP), which
is a benchmarking tool to measure TCP network performance, and other tools such as
traceroute.

e. Rework the command line so shell commands can be run dynamically (currently shell
commands are compile time inclusions to MSDPI).

3. Complete SNMP processing to support basic MIB database exchanges and unique security

features such as inter-domain exchanges. This will provide a solution for network product
vendors, such as Anagran, who could exploit the MSDPI “Sandwich” within DoD/IC protected
network configurations, thus seamlessly supporting product MIB inter-domain exchange.

4. Complete the incorporation of MSDPI within the Bay Microsystems product line by providing
assistance to Bay with the Buildroot process.

5. Integrate the OpenFlow forwarding table process into MSDPI. This would provide the DoD/IC
with a valuable full-featured and dynamically flexible network virtualization and simulation tool
as well as a like encryption device development tool which does not exist today. It would also
allow network encryption device and network component developers and test engineers to test
and evaluate DoD/IC unique requirements without disrupting operational networks. Finally, it
would provide a prototype reference for developers in meeting DoD/IC mission requirements.

20 CONCLUSION

The successful implementation of MSDPI prototypes provides solid proof of the many benefits this

system has for the government. It provides an effective way to maintain the technological readiness of
encryption device technology. It enhances the capabilities of existing information assurance systems. It
provides a deployable mechanism for policy control between protected domains. It clearly demonstrates
the ability to converge routing protocols, IA, and test sets into one control plane. Finally, the prototypes
clearly demonstrate reduced costs and logistical management of DoD/IC operational encryption devices,
test tool devices, and policy management devices.

Exploiting the MSDPI 79

REFERENCES

1. C.L. Robson, “Multi-Service Domain Protecting Interface Architecture,” NRL/FR/5591—08-10,176,

Naval Research Laboratory, Washington, DC, December 19, 2008.
2. C.L. Robson, “Session Initiation Protocol Network Encryption Device Plain Text Domain Discovery

Service,” NRL/FR/5591—07-10,156, Naval Research Laboratory, Washington, DC, December 7,
2007.

3. C.L. Robson, “How to Use FASTLANEs to Protect IP Networks,” NRL/MR/5590—06-8979, Naval
Research Laboratory, Washington, DC, August 18, 2006.

4. RFC 3438, “Layer Two Tunneling Protocol (L2TP) Internet Assigned Numbers Authority (IANA)
Considerations Update,” W. Townsley, 5 pp., The Internet Society, December 2002,
http://tools.ietf.org/rfc/rfc3438.txt.

5. RFC 3986, “Uniform Resource Identifier (URI): Generic Syntax,” T. Berners-Lee, R. Fielding, and L.
Masinter, 61 pp., The Internet Society, January 2005, www.ietf.org/rfc/rfc3986.txt.

6. RFC 1349, “Type of Service in the Internet Protocol Suite,” P. Almquist, 28 pp., The Internet
Society, July 1992, http://tools.ietf.org/rfc/rfc1349.txt.

7. RFC 2547bis, “BGP/MPLS IP VPNs,” E.C. Rosen and Y. Rekhter, 49 pp., The Internet Society,
October 2004, http://tools.ietf.org/id/draft-ietf-13vpn-rfc2547bis-03.txt.

8. RFC 2401, “Security Architecture for the Internet Protocol,” S. Kent and R. Atkinson, 66 pp., The
Internet Society, November 1998, www.ietf.org/rfc/rfc2401.txt.

BIBLIOGRAPHY

Almesberger, W., “Linux Traffic Control – Next Generation,” October 18, 2002, available at
http://tcng.sourceforge.net/doc/tcng-overview.pdf.

“Extensible Markup Language (XML) 1.0 (Fourth Edition),” T. Bray, J. Paoli, C.M. Sperberg-McQueen,
E. Maler, and F. Yergeau, September 2006, http://www.w3.org/TR/2006/REC-xml-20060816/.

IceWalkers, IOCTL Man Page, pp. 1, April 9, 2008.

Kashyap, V., and H.K.J. Chu, “IP encapsulation and address resolution over InfiniBand networks,” 13 pp.
The Internet Society, February 6, 2002, http://tools.ietf.org/id/draft-ietf-ipoib-ip-over-infiniband-00.txt.

Mellanox Technologies Inc., InfiniBand Architecture Overview, pp. 1-44, April 9, 2008.

RFC 2327, “SDP: Session Description Protocol,” M. Handley and V. Jacobson, 42 pp., The Internet
Society, April 1998, http://www.ietf.org/rfc/rfc2327.txt.

RFC 3087, “Control of Service Context using SIP Request-URI,” B. Campbell and R. Sparks, 39 pp., The
Internet Society, April 2001, http://www.rfc-editor.org/rfc/rfc3087.txt.

RFC 3261, “SIP: Session Initiation Protocol,” J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley, and E. Schooler, 269 pp., The Internet Society, June 2002,
http://www.ietf.org/rfc/rfc3261.txt.

RFC 3264, “An Offer/Answer Model with the Session Description Protocol (SDP),” J. Rosenberg and H.
Schulzrinne, 25 pp., The Internet Society, June 2002, http://www.ietf.org/rfc/rfc3264.txt.

80 Christopher L. Robson

RFC 3265, “Session Initiation Protocol (SIP)-Specific Event Notification,” A.B. Roach, 38 pp., The
Internet Society, June 2002, http://www.ietf.org/rfc/rfc3265.txt.

RFC 3270, “Multi-Protocol Label Switching (MPLS) Support of Differentiated Services,” F. Le Faucheur
(ed.), L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan, P. Cheval, and J. Heinanen, 64 pp., The
Internet Society, May 2002, http://www.ietf.org/rfc/rfc3270.txt.

RFC 3327, “Session Initiation Protocol (SIP) Extension Header Field for Registering Non-Adjacent
Contacts,” D. Willis and B. Hoeneisen, 17 pp., The Internet Society, December 2002, http://www.rfc-
editor.org/rfc/rfc3327.txt.

RFC 3515, “The Session Initiation Protocol (SIP) Refer Method,” R. Sparks, 23 pp., The Internet Society,
April 2003, http://www.ietf.org/rfc/rfc3515.txt.

RFC 3564, “Requirements for Support of Differentiated Services-aware MPLS Traffic Engineering,” F.
Le Faucheur and W. Lai, 22 pp., The Internet Society, July 2003, http://www.ietf.org/rfc/rfc3564.txt.

RFC 3856, “A Presence Event Package for the Session Initiation Protocol (SIP),” J. Rosenberg, 27 pp.,
The Internet Society, August 2004, http://www.ietf.org/rfc/rfc3856.txt.

RFC 3859, “Common Profile for Presence (CPP),” J. Peterson, 15 pp., The Internet Society, August 2004,
http://tools.ietf.org/rfc/rfc3859.txt.

RFC 3863, “Presence Information Data Format (PIDF),” H. Sugano, S. Fujimoto, G. Klyne, A. Bateman,
W. Carr, and J. Peterson, 28 pp., The Internet Society, August 2004, http://www.ietf.org/rfc/rfc3863.txt.

RFC 4105, “Requirements for Inter-Area MPLS Traffic Engineering,” J.-L. Le Roux, J.-P. Vasseur, and
J. Boyle, 22 pp., The Internet Society, June 2005, http://www.ietf.org/rfc/rfc4105.txt.

RFC 4303, “IP Encapsulating Security Payload (ESP),” S. Kent, 44 pp., The Internet Society, December
2005, http://www.ietf.org/rfc/rfc4303.txt.

RFC 4762, “Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling,”
M. Lasserre and V. Kompella, 31 pp., The Internet Society, January 2007,
http://tools.ietf.org/rfc/rfc4762.txt.

Sofia-SIP Library, http://sofia-sip.sourceforge.net.

